Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Spatial Downscaling of MODIS Land Surface Temperatures Using Geographically Weighted Regression: Case Study in Northern China
Land surface temperatures (LSTs) at high spatial resolution are crucial for hydrological, meteorological, and ecological studies. Downscaling LSTs from coarse resolution to finer resolution is an alternative way to obtain LSTs at high spatial resolution. In this paper, we proposed a new algorithm based on geographically weighted regression (GWR) to downscale Moderate Resolution Imaging Spectroradiometer LST data from 990 to 90 m. Unlike previous LST downscaling algorithms, this algorithm built the nonstationary relationship between LST and other environmental factors (including the normalized difference vegetation index and a digital elevation model) using geographically varying regression coefficients. The uncertainty in this algorithm was evaluated with a sensitivity analysis. The results show that the total uncertainty in this algorithm is less than 2 K. The performance of the GWR-based algorithm was assessed using concurrent ASTER LST data as a reference LST data set. Moreover, this algorithm was compared against the TsHARP algorithm, which was widely used for LST downscaling. The results indicate that the GWR-based algorithm outperforms the TsHARP algorithm in terms of statistical results. The root mean square error (mean absolute error) value decreases from 3.6 K (2.7 K) for the TsHARP algorithm to 3.1 K (2.3 K) for the GWR-based algorithm.
Spatial Downscaling of MODIS Land Surface Temperatures Using Geographically Weighted Regression: Case Study in Northern China
Land surface temperatures (LSTs) at high spatial resolution are crucial for hydrological, meteorological, and ecological studies. Downscaling LSTs from coarse resolution to finer resolution is an alternative way to obtain LSTs at high spatial resolution. In this paper, we proposed a new algorithm based on geographically weighted regression (GWR) to downscale Moderate Resolution Imaging Spectroradiometer LST data from 990 to 90 m. Unlike previous LST downscaling algorithms, this algorithm built the nonstationary relationship between LST and other environmental factors (including the normalized difference vegetation index and a digital elevation model) using geographically varying regression coefficients. The uncertainty in this algorithm was evaluated with a sensitivity analysis. The results show that the total uncertainty in this algorithm is less than 2 K. The performance of the GWR-based algorithm was assessed using concurrent ASTER LST data as a reference LST data set. Moreover, this algorithm was compared against the TsHARP algorithm, which was widely used for LST downscaling. The results indicate that the GWR-based algorithm outperforms the TsHARP algorithm in terms of statistical results. The root mean square error (mean absolute error) value decreases from 3.6 K (2.7 K) for the TsHARP algorithm to 3.1 K (2.3 K) for the GWR-based algorithm.
Spatial Downscaling of MODIS Land Surface Temperatures Using Geographically Weighted Regression: Case Study in Northern China
Duan, Si-Bo (Autor:in) / Li, Zhao-Liang
2016
Aufsatz (Zeitschrift)
Englisch
Lokalklassifikation TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
Measuring Spatial Variations in Relationships with Geographically Weighted Regression
British Library Conference Proceedings | 1997
|Analysis of Landslide Surface Deformation Using Geographically Weighted Regression
British Library Conference Proceedings | 2012
|Downscaling land surface temperatures at regional scales with random forest regression
Online Contents | 2016
|Downscaling MODIS images with area-to-point regression kriging
Online Contents | 2015
|