Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
An Iterative BRDF/NDVI Inversion Algorithm Based on A Posteriori Variance Estimation of Observation Errors
Current bidirectional reflectance distribution function (BRDF) inversions using ordinary least squares (OLS) criterion can be easily contaminated by observations with residual cloud and undetected high aerosols, which leads to abrupt fluctuations in the normalized difference vegetation index (NDVI) time series. The OLS criterion assumes the noise has Gaussian distribution, which is often violated due to positive noise biases caused by clouds and high aerosols. A changing-weight iterative BRDF/NDVI inversion algorithm (CWI) based on a posteriori variance estimation of observation errors is presented to explicitly consider the asymmetrically distributed noise and observations with unequal accuracy in the BRDF retrieval. CWI employs a posteriori variance estimation and an NDVI-based indicator to iteratively adjust the weight of each observation according to its noise level. The validation results suggest CWI performs better than the Li-Gao and OLS approaches. The rmse was reduced from 0.074 to 0.028, and the relative error decreased from 13.4% to 3.8% at the U.S. Department of Agriculture Beltsville Agricultural Research Center site. Similarly, at the Harvard Forest site, the rmse was reduced from 0.086 to 0.031, and the relative error decreased from 9.5% to 2.7%. The average noise and relative noise of the CWI NDVI time series over ten EOS Land Validation Core Sites from 2003-2009 was smaller (0.028, 3.7%) than those of MOD13A2 (0.041, 5.2%), MYD13A2 (0.039, 4.9%) and MCD43B4 (0.030, 4.4%). The results demonstrate the robustness of the CWI approach in suppressing the influence of contaminated observations in BRDF retrievals by producing results that are less affected by undetected clouds and high aerosols.
An Iterative BRDF/NDVI Inversion Algorithm Based on A Posteriori Variance Estimation of Observation Errors
Current bidirectional reflectance distribution function (BRDF) inversions using ordinary least squares (OLS) criterion can be easily contaminated by observations with residual cloud and undetected high aerosols, which leads to abrupt fluctuations in the normalized difference vegetation index (NDVI) time series. The OLS criterion assumes the noise has Gaussian distribution, which is often violated due to positive noise biases caused by clouds and high aerosols. A changing-weight iterative BRDF/NDVI inversion algorithm (CWI) based on a posteriori variance estimation of observation errors is presented to explicitly consider the asymmetrically distributed noise and observations with unequal accuracy in the BRDF retrieval. CWI employs a posteriori variance estimation and an NDVI-based indicator to iteratively adjust the weight of each observation according to its noise level. The validation results suggest CWI performs better than the Li-Gao and OLS approaches. The rmse was reduced from 0.074 to 0.028, and the relative error decreased from 13.4% to 3.8% at the U.S. Department of Agriculture Beltsville Agricultural Research Center site. Similarly, at the Harvard Forest site, the rmse was reduced from 0.086 to 0.031, and the relative error decreased from 9.5% to 2.7%. The average noise and relative noise of the CWI NDVI time series over ten EOS Land Validation Core Sites from 2003-2009 was smaller (0.028, 3.7%) than those of MOD13A2 (0.041, 5.2%), MYD13A2 (0.039, 4.9%) and MCD43B4 (0.030, 4.4%). The results demonstrate the robustness of the CWI approach in suppressing the influence of contaminated observations in BRDF retrievals by producing results that are less affected by undetected clouds and high aerosols.
An Iterative BRDF/NDVI Inversion Algorithm Based on A Posteriori Variance Estimation of Observation Errors
Zeng, Yelu (Autor:in) / Li, Jing / Liu, Qinhuo / Huete, Alfredo R / Xu, Baodong / Yin, Gaofei / Zhao, Jing / Yang, Le / Fan, Weiliang / Wu, Shengbiao
2016
Aufsatz (Zeitschrift)
Englisch
Lokalklassifikation TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
Improving the estimation of leaf area index by using remotely sensed NDVI with BRDF signatures
Online Contents | 2010
|Forward a Small-Timescale BRDF/Albedo by Multisensor Combined BRDF Inversion Model
Online Contents | 2017
|Influence of BRDF on NDVI and biomass estimations of Alaska Arctic tundra
DOAJ | 2016
|