Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
The effectiveness of beach mega-nourishment, assessed over three management epochs
Resilient coastal protection requires adaptive management strategies that build with nature to maintain long-term sustainability. With increasing pressures on shorelines from urbanisation, industrial growth, sea-level rise and changing storm climates soft approaches to coastal management are implemented to support natural habitats and maintain healthy coastal ecosystems. The impact of a beach mega-nourishment along a frontage of interactive natural and engineered systems that incorporate soft and hard defences is explored. A coastal evolution model is applied to simulate the impact of different hypothetical mega-nourishment interventions to assess their impacts' over 3 shoreline management planning epochs: present-day (0-20 years), medium-term (20-50 years) and long-term (50-100 years). The impacts of the smaller interventions when appropriately positioned are found to be as effective as larger schemes, thus making them more cost-effective for present-day management. Over time the benefit from larger interventions becomes more noticeable, with multi-location schemes requiring a smaller initial nourishment to achieve at least the same benefit as that of a single-location scheme. While the longer-term impact of larger schemes reduces erosion across a frontage the short-term impact down drift of the scheme can lead to an increase in erosion as the natural sediment drift becomes interrupted. This research presents a transferable modelling tool to assess the impact of nourishment schemes for a variety of sedimentary shorelines and highlights both the positive and negative impact of beach mega-nourishment.
The effectiveness of beach mega-nourishment, assessed over three management epochs
Resilient coastal protection requires adaptive management strategies that build with nature to maintain long-term sustainability. With increasing pressures on shorelines from urbanisation, industrial growth, sea-level rise and changing storm climates soft approaches to coastal management are implemented to support natural habitats and maintain healthy coastal ecosystems. The impact of a beach mega-nourishment along a frontage of interactive natural and engineered systems that incorporate soft and hard defences is explored. A coastal evolution model is applied to simulate the impact of different hypothetical mega-nourishment interventions to assess their impacts' over 3 shoreline management planning epochs: present-day (0-20 years), medium-term (20-50 years) and long-term (50-100 years). The impacts of the smaller interventions when appropriately positioned are found to be as effective as larger schemes, thus making them more cost-effective for present-day management. Over time the benefit from larger interventions becomes more noticeable, with multi-location schemes requiring a smaller initial nourishment to achieve at least the same benefit as that of a single-location scheme. While the longer-term impact of larger schemes reduces erosion across a frontage the short-term impact down drift of the scheme can lead to an increase in erosion as the natural sediment drift becomes interrupted. This research presents a transferable modelling tool to assess the impact of nourishment schemes for a variety of sedimentary shorelines and highlights both the positive and negative impact of beach mega-nourishment.
The effectiveness of beach mega-nourishment, assessed over three management epochs
Brown, Jennifer M (Autor:in) / Phelps, Jack J.C / Barkwith, Andrew / Hurst, Martin D / Ellis, Michael A / Plater, Andrew J
2016
Aufsatz (Zeitschrift)
Englisch
BKL:
43.00
Online Contents | 2001
Coastal Management, Dredging, and Beach Nourishment
British Library Conference Proceedings | 2005
|Online Contents | 1998
Beach Nourishment And Protection
British Library Online Contents | 1996
|Justification for Beach Nourishment
ASCE | 1997
|