Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Rheological properties of loose sands subjected to upward flow
The objective of this study was to investigate the rheological properties of loose sands subjected to upward flow by using a vane-type rheometer that controlled upward flow in the loose sand specimens. Various hydraulic gradients (i.e., i = 0–2.0) were applied to loose sands. The rheological properties of the loose sands, such as yield stress and viscosity, were determined based on the Bingham and Herschel–Bulkley models. The experimental results showed that the flow behavior of loose sand samples exhibited a shear thickening when the Herschel–Bulkley model was applied (i.e., nondimensional flow index n > 1) and exhibited a Bingham-like within a limited shear rate range (i.e., 1∼30 1/s). The latter is clearly shown for a relatively high shear rate. As the hydraulic gradient was increased, the flow characteristics were close to the Bingham fluid. Yield stress showed a tendency to decrease linearly as hydraulic gradient was increased. However, the viscosity of the loose sands maintained a constant value irrespective of hydraulic gradient. The test results indicated that the pore fluid pressure resulting from upward flow in a soil sample affects yield stress, which contributes to the initiation of debris flow mobilization. As a result, it was possible to estimate the rheological properties of soil at the condition of liquefaction (critical hydraulic gradient), or initial occurrence of debris flow.
Rheological properties of loose sands subjected to upward flow
The objective of this study was to investigate the rheological properties of loose sands subjected to upward flow by using a vane-type rheometer that controlled upward flow in the loose sand specimens. Various hydraulic gradients (i.e., i = 0–2.0) were applied to loose sands. The rheological properties of the loose sands, such as yield stress and viscosity, were determined based on the Bingham and Herschel–Bulkley models. The experimental results showed that the flow behavior of loose sand samples exhibited a shear thickening when the Herschel–Bulkley model was applied (i.e., nondimensional flow index n > 1) and exhibited a Bingham-like within a limited shear rate range (i.e., 1∼30 1/s). The latter is clearly shown for a relatively high shear rate. As the hydraulic gradient was increased, the flow characteristics were close to the Bingham fluid. Yield stress showed a tendency to decrease linearly as hydraulic gradient was increased. However, the viscosity of the loose sands maintained a constant value irrespective of hydraulic gradient. The test results indicated that the pore fluid pressure resulting from upward flow in a soil sample affects yield stress, which contributes to the initiation of debris flow mobilization. As a result, it was possible to estimate the rheological properties of soil at the condition of liquefaction (critical hydraulic gradient), or initial occurrence of debris flow.
Rheological properties of loose sands subjected to upward flow
Kim, Yun Tae (Autor:in) / Kang, Hyo Sub
2017
Aufsatz (Zeitschrift)
Englisch
Rheological properties of loose sands subjected to upward flow
British Library Online Contents | 2017
|Rheological Properties of Loose Sands Subjected to Upward Flow
Online Contents | 2016
|Vibrocompaction of loose estuarine sands
British Library Conference Proceedings | 1997
|Ground Engineering with Granular Inclusions for Loose Saturated Sands Subjected to Seismic Loadings
Online Contents | 2014
|Ground Engineering with Granular Inclusions for Loose Saturated Sands Subjected to Seismic Loadings
Springer Verlag | 2013
|