Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Wide Nonlinear Chirp Scaling Algorithm for Spaceborne Stripmap Range Sweep SAR Imaging
The spaceborne stripmap range sweep synthetic aperture radar (SS-RSSAR) is a new concept spaceborne SAR system that images the region of interest (ROI) with ROI-orientated strips, which, unlike the traditional spaceborne SAR, are allowed to be not parallel with the satellite orbit. The SS-RSSAR imaging is a challenging problem because echoes of a wide region have strong spatial varieties, especially in high-squint geometries, and are hard to be focused by a single swath. The traditional imaging algorithms could solve this problem by cost-ineffectively dividing an ROI into many subswaths for separate processing. In this paper, a new wide nonlinear chirp scaling (W-NLCS) algorithm is proposed to efficiently image the SS-RSSAR data in a single swath. Comparing with the traditional nonlinear chirp scaling algorithm, the W-NLCS algorithm is superior in three major aspects: the nonlinear bulk range migration compensation (RMC), the interpolation-based residual RMC, and the modified azimuth frequency perturbation. Specifically, the interpolation for the residual RMC, the most significant step in achieving the wide-swath imaging performance, is made innovatively in the time domain. The derivation of the W-NLCS algorithm, as well as the performance analyses of the W-NLCS algorithm in aspects of the azimuth resolution, accuracy, and complexity, are all provided. The presented approach is evaluated by the point target simulations.
Wide Nonlinear Chirp Scaling Algorithm for Spaceborne Stripmap Range Sweep SAR Imaging
The spaceborne stripmap range sweep synthetic aperture radar (SS-RSSAR) is a new concept spaceborne SAR system that images the region of interest (ROI) with ROI-orientated strips, which, unlike the traditional spaceborne SAR, are allowed to be not parallel with the satellite orbit. The SS-RSSAR imaging is a challenging problem because echoes of a wide region have strong spatial varieties, especially in high-squint geometries, and are hard to be focused by a single swath. The traditional imaging algorithms could solve this problem by cost-ineffectively dividing an ROI into many subswaths for separate processing. In this paper, a new wide nonlinear chirp scaling (W-NLCS) algorithm is proposed to efficiently image the SS-RSSAR data in a single swath. Comparing with the traditional nonlinear chirp scaling algorithm, the W-NLCS algorithm is superior in three major aspects: the nonlinear bulk range migration compensation (RMC), the interpolation-based residual RMC, and the modified azimuth frequency perturbation. Specifically, the interpolation for the residual RMC, the most significant step in achieving the wide-swath imaging performance, is made innovatively in the time domain. The derivation of the W-NLCS algorithm, as well as the performance analyses of the W-NLCS algorithm in aspects of the azimuth resolution, accuracy, and complexity, are all provided. The presented approach is evaluated by the point target simulations.
Wide Nonlinear Chirp Scaling Algorithm for Spaceborne Stripmap Range Sweep SAR Imaging
Wang, Yan (Autor:in) / Li, Jing-Wen / Yang, Jian
2017
Aufsatz (Zeitschrift)
Englisch
Lokalklassifikation TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
Mitigation of azimuth ambiguities in spaceborne stripmap SAR images using selective restoration
Online Contents | 2014
|