Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
High-Resolution Aerial Image Labeling With Convolutional Neural Networks
The problem of dense semantic labeling consists in assigning semantic labels to every pixel in an image. In the context of aerial image analysis, it is particularly important to yield high-resolution outputs. In order to use convolutional neural networks (CNNs) for this task, it is required to design new specific architectures to provide fine-grained classification maps. Many dense semantic labeling CNNs have been recently proposed. Our first contribution is an in-depth analysis of these architectures. We establish the desired properties of an ideal semantic labeling CNN, and assess how those methods stand with regard to these properties. We observe that even though they provide competitive results, these CNNs often underexploit properties of semantic labeling that could lead to more effective and efficient architectures. Out of these observations, we then derive a CNN framework specifically adapted to the semantic labeling problem. In addition to learning features at different resolutions, it learns how to combine these features. By integrating local and global information in an efficient and flexible manner, it outperforms previous techniques. We evaluate the proposed framework and compare it with state-of-the-art architectures on public benchmarks of high-resolution aerial image labeling.
High-Resolution Aerial Image Labeling With Convolutional Neural Networks
The problem of dense semantic labeling consists in assigning semantic labels to every pixel in an image. In the context of aerial image analysis, it is particularly important to yield high-resolution outputs. In order to use convolutional neural networks (CNNs) for this task, it is required to design new specific architectures to provide fine-grained classification maps. Many dense semantic labeling CNNs have been recently proposed. Our first contribution is an in-depth analysis of these architectures. We establish the desired properties of an ideal semantic labeling CNN, and assess how those methods stand with regard to these properties. We observe that even though they provide competitive results, these CNNs often underexploit properties of semantic labeling that could lead to more effective and efficient architectures. Out of these observations, we then derive a CNN framework specifically adapted to the semantic labeling problem. In addition to learning features at different resolutions, it learns how to combine these features. By integrating local and global information in an efficient and flexible manner, it outperforms previous techniques. We evaluate the proposed framework and compare it with state-of-the-art architectures on public benchmarks of high-resolution aerial image labeling.
High-Resolution Aerial Image Labeling With Convolutional Neural Networks
Maggiori, Emmanuel (Autor:in) / Tarabalka, Yuliya / Charpiat, Guillaume / Alliez, Pierre
2017
Aufsatz (Zeitschrift)
Englisch
Lokalklassifikation TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
Dense Semantic Labeling of Subdecimeter Resolution Images With Convolutional Neural Networks
Online Contents | 2017
|Turbulent flame image classification using Convolutional Neural Networks
DOAJ | 2022
|Using convolutional neural networks to identify illegal roofs from unmanned aerial vehicle images
Taylor & Francis Verlag | 2024
|