Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Free Vibration of a Rotating Sandwich Plate with Viscoelastic Core and Functionally Graded Material Constraining Layer
Free vibration analysis of a sandwich plate with viscoelastic material core and functionally graded material (FGM) constraining layer under centrifugal force field is investigated herein. One edge of the sandwich plate is fixed to a rotating hub. The first-order shear deformation theory (FSDT) is used in the finite element modeling of the problem. The effects of strains due to the longitudinal and transverse deformations are also considered in addition to the shear deformation of the core. Various parametric studies are carried out to examine the effects of volume fraction index, setting angle, hub radius and rotational speed on the vibration characteristics of the sandwich plate. It is found that the fundamental frequency of the plate decreases with an increase in the volume fraction index of the FGM layer, viscoelastic core thickness and setting angle. The first mode loss factor increases with respect to the increasing volume fraction index. Increase in rotational speed and hub radius lead to an increase in the natural frequencies and a decrease in the modal loss factors.
Free Vibration of a Rotating Sandwich Plate with Viscoelastic Core and Functionally Graded Material Constraining Layer
Free vibration analysis of a sandwich plate with viscoelastic material core and functionally graded material (FGM) constraining layer under centrifugal force field is investigated herein. One edge of the sandwich plate is fixed to a rotating hub. The first-order shear deformation theory (FSDT) is used in the finite element modeling of the problem. The effects of strains due to the longitudinal and transverse deformations are also considered in addition to the shear deformation of the core. Various parametric studies are carried out to examine the effects of volume fraction index, setting angle, hub radius and rotational speed on the vibration characteristics of the sandwich plate. It is found that the fundamental frequency of the plate decreases with an increase in the volume fraction index of the FGM layer, viscoelastic core thickness and setting angle. The first mode loss factor increases with respect to the increasing volume fraction index. Increase in rotational speed and hub radius lead to an increase in the natural frequencies and a decrease in the modal loss factors.
Free Vibration of a Rotating Sandwich Plate with Viscoelastic Core and Functionally Graded Material Constraining Layer
Joseph, Shince. V (Autor:in) / Mohanty, S. C
2017
Aufsatz (Zeitschrift)
Englisch
British Library Online Contents | 2015
|Higher order free vibration of sandwich curved beams with a functionally graded core
British Library Online Contents | 2014
|Free Vibration Analysis of Composite Sandwich Plate with Viscoelastic Core
British Library Online Contents | 2011
|British Library Online Contents | 2017
|Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core
Online Contents | 2016
|