Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Bearing strength surface for bridge caisson foundations in frictional soil under combined loading
Abstract The problem of estimating the bearing capacity of massive caisson foundations in frictional soil under combined vertical (N), horizontal (Q) and moment (M) loading is examined numerically by means of three-dimensional finite element analyses. The analysis is performed with due consideration to the foundation’s depth-to-width ratio (D/B), the magnitude of the vertical load and the caisson-soil contact interface conditions. The constitutive law for soil behavior is appropriately validated against experimental results from 1-g small-scale tests, available in the literature. The ultimate limit states are presented in the form of a bearing strength surface in dimensionless and normalized form, while detailed discussion is provided on the physical and geometrical interpretation of the kinematic mechanisms that accompany failure. A generalized closed-form expression for the failure envelope in M–Q–N space is then fitted to the numerical results with use of an appropriately trained artificial neural network. An upper-bound limit equilibrium solution for a certain failure mechanism (designated as the “sliding” mechanism) associated with maximum horizontal bearing capacity is also developed for verification purposes. One of the originalities of the paper lies with respect to the post-failure response of the caissons, where it is shown that the incremental displacement vector is accurately reproduced by assuming normality on the bearing strength surface irrespective of the considered plastic flow rule (associative or non-associative) at the microscale (soil element).
Bearing strength surface for bridge caisson foundations in frictional soil under combined loading
Abstract The problem of estimating the bearing capacity of massive caisson foundations in frictional soil under combined vertical (N), horizontal (Q) and moment (M) loading is examined numerically by means of three-dimensional finite element analyses. The analysis is performed with due consideration to the foundation’s depth-to-width ratio (D/B), the magnitude of the vertical load and the caisson-soil contact interface conditions. The constitutive law for soil behavior is appropriately validated against experimental results from 1-g small-scale tests, available in the literature. The ultimate limit states are presented in the form of a bearing strength surface in dimensionless and normalized form, while detailed discussion is provided on the physical and geometrical interpretation of the kinematic mechanisms that accompany failure. A generalized closed-form expression for the failure envelope in M–Q–N space is then fitted to the numerical results with use of an appropriately trained artificial neural network. An upper-bound limit equilibrium solution for a certain failure mechanism (designated as the “sliding” mechanism) associated with maximum horizontal bearing capacity is also developed for verification purposes. One of the originalities of the paper lies with respect to the post-failure response of the caissons, where it is shown that the incremental displacement vector is accurately reproduced by assuming normality on the bearing strength surface irrespective of the considered plastic flow rule (associative or non-associative) at the microscale (soil element).
Bearing strength surface for bridge caisson foundations in frictional soil under combined loading
Zafeirakos, Athanasios (Autor:in) / Gerolymos, Nikos (Autor:in)
Acta Geotechnica ; 11
2016
Aufsatz (Zeitschrift)
Englisch
BKL:
56.20
Ingenieurgeologie, Bodenmechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
DDC:
624.15105
Bearing strength surface for bridge caisson foundations in frictional soil under combined loading
Springer Verlag | 2016
|Bearing strength surface for bridge caisson foundations in frictional soil under combined loading
British Library Online Contents | 2016
|Evaluation of undrained failure envelopes of caisson foundations under combined loading
Online Contents | 2016
|Wave Loading of Caisson Foundations
British Library Conference Proceedings | 1993
|