Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
The compression and collapse behaviour of intact loess in suction-monitored triaxial apparatus
Abstract Loess is susceptible to large and sudden volume reduction induced by loading or wetting. The work in this paper focused on compression and collapse behaviour of the intact loess under isotropic stress condition. To this purpose, an improved technique was introduced for the unsaturated triaxial apparatus that was capable of precise injecting know the amounts of water into the specimen, while continuously monitoring the suction. Tests were performed under two separate hydro-mechanical paths: isotropic compression at various suctions and wetting in steps at various net isotropic stresses. Experimental measurements indicated that the compression behaviour of the intact loess was highly affected by the extent of the level of the suction. The wetting-induced collapse behaviour depended on both the extent of applied net isotropic stress and the hydro-mechanical path. The collapse potential reached a maximum when the specimen was wetted at the initial yield stress. No unique of yield curve was identified from loading and wetting paths in a suction–net mean stress plane. For the same plastic volumetric strain, the suction decrease yield curve identified from wetting path appeared under the loading–collapse yield curve identified from loading path. Interestingly, the uniqueness of the yield curve was identified from loading and wetting paths in a suction–mean effective stress plane. An elastoplastic model of the intact loess under isotropic stress condition incorporating soil water retention behaviour was proposed, using the mean effective stress as constitutive stress. This model is able to reproduce the volumetric behaviour of the intact loess along constant suction paths and wetting paths quite well, using a single-valued compressibility index.
The compression and collapse behaviour of intact loess in suction-monitored triaxial apparatus
Abstract Loess is susceptible to large and sudden volume reduction induced by loading or wetting. The work in this paper focused on compression and collapse behaviour of the intact loess under isotropic stress condition. To this purpose, an improved technique was introduced for the unsaturated triaxial apparatus that was capable of precise injecting know the amounts of water into the specimen, while continuously monitoring the suction. Tests were performed under two separate hydro-mechanical paths: isotropic compression at various suctions and wetting in steps at various net isotropic stresses. Experimental measurements indicated that the compression behaviour of the intact loess was highly affected by the extent of the level of the suction. The wetting-induced collapse behaviour depended on both the extent of applied net isotropic stress and the hydro-mechanical path. The collapse potential reached a maximum when the specimen was wetted at the initial yield stress. No unique of yield curve was identified from loading and wetting paths in a suction–net mean stress plane. For the same plastic volumetric strain, the suction decrease yield curve identified from wetting path appeared under the loading–collapse yield curve identified from loading path. Interestingly, the uniqueness of the yield curve was identified from loading and wetting paths in a suction–mean effective stress plane. An elastoplastic model of the intact loess under isotropic stress condition incorporating soil water retention behaviour was proposed, using the mean effective stress as constitutive stress. This model is able to reproduce the volumetric behaviour of the intact loess along constant suction paths and wetting paths quite well, using a single-valued compressibility index.
The compression and collapse behaviour of intact loess in suction-monitored triaxial apparatus
Zhang, Dengfei (Autor:in) / Wang, Jiading (Autor:in) / Chen, Cunli (Autor:in) / Wang, Songhe (Autor:in)
Acta Geotechnica ; 15
2019
Aufsatz (Zeitschrift)
Englisch
BKL:
56.20
Ingenieurgeologie, Bodenmechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
DDC:
624.15105
The compression and collapse behaviour of intact loess in suction-monitored triaxial apparatus
Springer Verlag | 2020
|The compression and collapse behaviour of intact loess in suction-monitored triaxial apparatus
Springer Verlag | 2020
|Collapse Behavior of Compacted Silty Clay in Suction-Monitored Oedometer Apparatus
Online Contents | 2007
|Collapse Behavior of Compacted Silty Clay in Suction-Monitored Oedometer Apparatus
British Library Online Contents | 2007
|Evolution of meso-structure of intact loess during triaxial shear test
British Library Conference Proceedings | 2011
|