Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
The Stokes and Vening-Meinesz functionals in a moving tangent space
Abstract The regularized solution of the external sphericalStokes boundary value problem as being used for computations of geoid undulations and deflections of the vertical is based upon theGreen functions S1($ Λ_{0} $, $ Φ_{0} $, Λ, Φ) ofBox 0.1 (R = R0) andV1($ Λ_{0} $, $ Φ_{0} $, Λ, Φ) ofBox 0.2 (R = R0) which depend on theevaluation point {$ Λ_{0} $, $ Φ_{0} $} ∈ SR02 and thesampling point {Λ, Φ} ∈ SR02 ofgravity anomalies $ Δ_{γ} $(Λ, Φ) with respect to a normal gravitational field of typegm/R (”free air anomaly”). If the evaluation point is taken as the meta-north pole of theStokes reference sphere SR02, theStokes function, and theVening-Meinesz function, respectively, takes the formS(Ψ) ofBox 0.1, andV2(Ψ) ofBox 0.2, respectively, as soon as we introduce {meta-longitude (azimuth), meta-colatitude (spherical distance)}, namely {A, Ψ} ofBox 0.5. In order to deriveStokes functions andVening-Meinesz functions as well as their integrals, theStokes andVening-Meinesz functionals, in aconvolutive form we map the sampling point {Λ, Φ} onto the tangent plane $ T_{0} $SR02 at {$ Λ_{0} $, $ Φ_{0} $} by means ofoblique map projections of type(i) equidistant (Riemann polar/normal coordinates),(ii) conformal and(iii) equiareal.Box 2.1.–2.4. andBox 3.1.– 3.4. are collections of the rigorously transformedconvolutive Stokes functions andStokes integrals andconvolutive Vening-Meinesz functions andVening-Meinesz integrals. The graphs of the correspondingStokes functions S2(Ψ),S3(r),⋯,S6(r) as well as the correspondingStokes-Helmert functions H2(Ψ),H3(r),⋯,H6(r) are given byFigure 4.1–4.5. In contrast, the graphs ofFigure 4.6–4.10 illustrate the correspondingVening-Meinesz functions V2(Ψ),V3(r),⋯,V6(r) as well as the correspondingVening-Meinesz-Helmert functions Q2(Ψ),Q3(r),⋯,Q6(r). The difference between theStokes functions / Vening-Meinesz functions andtheir first term (only used in the Flat Fourier Transforms of type FAST and FASZ), namelyS2(Ψ) − (sin Ψ/2)−1,S3(r) − (sinr/2R0)−1,⋯,S6(r) − 2R0/r andV2(Ψ) + (cos Ψ/2)/2($ sin^{2} $ Ψ/2),V3(r) + (cosr/2R0)/2($ sin^{2} $r/2R0),⋯,$$V_6 (r) + {{(R_0 \sqrt {4R_0^2 - r^2 } )} \mathord{\left/ {\vphantom {{(R_0 \sqrt {4R_0^2 - r^2 } )} {r^2 }}} \right. \kern-\nulldelimiterspace} {r^2 }}$$ illustrate the systematic errors in the”flat” Stokes function 2/Ψ or ”flat”Vening-Meinesz function −2/$ Ψ^{2} $. The newly derivedStokes functions S3(r),⋯,S6(r) ofBox 2.1–2.3, ofStokes integrals ofBox 2.4, as well asVening-Meinesz functionsV3(r),⋯,V6(r) ofBox 3.1–3.3, ofVening-Meinesz integrals ofBox 3.4 — all of convolutive type — pave the way for the rigorousFast Fourier Transform and the rigorousWavelet Transform of theStokes integral / theVening-Meinesz integral of type ”equidistant”, ”conformal” and ”equiareal”.
The Stokes and Vening-Meinesz functionals in a moving tangent space
Abstract The regularized solution of the external sphericalStokes boundary value problem as being used for computations of geoid undulations and deflections of the vertical is based upon theGreen functions S1($ Λ_{0} $, $ Φ_{0} $, Λ, Φ) ofBox 0.1 (R = R0) andV1($ Λ_{0} $, $ Φ_{0} $, Λ, Φ) ofBox 0.2 (R = R0) which depend on theevaluation point {$ Λ_{0} $, $ Φ_{0} $} ∈ SR02 and thesampling point {Λ, Φ} ∈ SR02 ofgravity anomalies $ Δ_{γ} $(Λ, Φ) with respect to a normal gravitational field of typegm/R (”free air anomaly”). If the evaluation point is taken as the meta-north pole of theStokes reference sphere SR02, theStokes function, and theVening-Meinesz function, respectively, takes the formS(Ψ) ofBox 0.1, andV2(Ψ) ofBox 0.2, respectively, as soon as we introduce {meta-longitude (azimuth), meta-colatitude (spherical distance)}, namely {A, Ψ} ofBox 0.5. In order to deriveStokes functions andVening-Meinesz functions as well as their integrals, theStokes andVening-Meinesz functionals, in aconvolutive form we map the sampling point {Λ, Φ} onto the tangent plane $ T_{0} $SR02 at {$ Λ_{0} $, $ Φ_{0} $} by means ofoblique map projections of type(i) equidistant (Riemann polar/normal coordinates),(ii) conformal and(iii) equiareal.Box 2.1.–2.4. andBox 3.1.– 3.4. are collections of the rigorously transformedconvolutive Stokes functions andStokes integrals andconvolutive Vening-Meinesz functions andVening-Meinesz integrals. The graphs of the correspondingStokes functions S2(Ψ),S3(r),⋯,S6(r) as well as the correspondingStokes-Helmert functions H2(Ψ),H3(r),⋯,H6(r) are given byFigure 4.1–4.5. In contrast, the graphs ofFigure 4.6–4.10 illustrate the correspondingVening-Meinesz functions V2(Ψ),V3(r),⋯,V6(r) as well as the correspondingVening-Meinesz-Helmert functions Q2(Ψ),Q3(r),⋯,Q6(r). The difference between theStokes functions / Vening-Meinesz functions andtheir first term (only used in the Flat Fourier Transforms of type FAST and FASZ), namelyS2(Ψ) − (sin Ψ/2)−1,S3(r) − (sinr/2R0)−1,⋯,S6(r) − 2R0/r andV2(Ψ) + (cos Ψ/2)/2($ sin^{2} $ Ψ/2),V3(r) + (cosr/2R0)/2($ sin^{2} $r/2R0),⋯,$$V_6 (r) + {{(R_0 \sqrt {4R_0^2 - r^2 } )} \mathord{\left/ {\vphantom {{(R_0 \sqrt {4R_0^2 - r^2 } )} {r^2 }}} \right. \kern-\nulldelimiterspace} {r^2 }}$$ illustrate the systematic errors in the”flat” Stokes function 2/Ψ or ”flat”Vening-Meinesz function −2/$ Ψ^{2} $. The newly derivedStokes functions S3(r),⋯,S6(r) ofBox 2.1–2.3, ofStokes integrals ofBox 2.4, as well asVening-Meinesz functionsV3(r),⋯,V6(r) ofBox 3.1–3.3, ofVening-Meinesz integrals ofBox 3.4 — all of convolutive type — pave the way for the rigorousFast Fourier Transform and the rigorousWavelet Transform of theStokes integral / theVening-Meinesz integral of type ”equidistant”, ”conformal” and ”equiareal”.
The Stokes and Vening-Meinesz functionals in a moving tangent space
Grafarend, Erik W. (Autor:in) / Krumm, Friedhelm (Autor:in)
Journal of Geodesy ; 70
1996
Aufsatz (Zeitschrift)
Englisch
BKL:
38.73
Geodäsie
On the integral formulas of Stokes and Vening Meinesz
Online Contents | 1968
|F. A. Vening Meinesz (1887–1966)
Online Contents | 1966
|Wavelet evaluation of the Stokes and Vening Meinesz integrals
Online Contents | 2003
|Methods for computing deflections of the vertical by modifying Vening-Meinesz' function
Online Contents | 1982
|