Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
The Abel-Poisson kernel and the Abel-Poisson integral in a moving tangent space
Abstract. The upward-downward continuation of a harmonic function like the gravitational potential is conventionally based on the direct-inverse Abel-Poisson integral with respect to a sphere of reference. Here we aim at an error estimation of the “planar approximation” of the Abel-Poisson kernel, which is often used due to its convolution form. Such a convolution form is a prerequisite to applying fast Fourier transformation techniques. By means of an oblique azimuthal map projection / projection onto the local tangent plane at an evaluation point of the reference sphere of type “equiareal” we arrive at a rigorous transformation of the Abel-Poisson kernel/Abel-Poisson integral in a convolution form. As soon as we expand the “equiareal” Abel-Poisson kernel/Abel-Poisson integral we gain the “planar approximation”. The differences between the exact Abel-Poisson kernel of type “equiareal” and the “planar approximation” are plotted and tabulated. Six configurations are studied in detail in order to document the error budget, which varies from 0.1% for points at a spherical height H=10km above the terrestrial reference sphere up to 98% for points at a spherical height H = 6.3×$ 10^{6} $km.
The Abel-Poisson kernel and the Abel-Poisson integral in a moving tangent space
Abstract. The upward-downward continuation of a harmonic function like the gravitational potential is conventionally based on the direct-inverse Abel-Poisson integral with respect to a sphere of reference. Here we aim at an error estimation of the “planar approximation” of the Abel-Poisson kernel, which is often used due to its convolution form. Such a convolution form is a prerequisite to applying fast Fourier transformation techniques. By means of an oblique azimuthal map projection / projection onto the local tangent plane at an evaluation point of the reference sphere of type “equiareal” we arrive at a rigorous transformation of the Abel-Poisson kernel/Abel-Poisson integral in a convolution form. As soon as we expand the “equiareal” Abel-Poisson kernel/Abel-Poisson integral we gain the “planar approximation”. The differences between the exact Abel-Poisson kernel of type “equiareal” and the “planar approximation” are plotted and tabulated. Six configurations are studied in detail in order to document the error budget, which varies from 0.1% for points at a spherical height H=10km above the terrestrial reference sphere up to 98% for points at a spherical height H = 6.3×$ 10^{6} $km.
The Abel-Poisson kernel and the Abel-Poisson integral in a moving tangent space
Grafarend, E. W. (Autor:in) / Krumm, F. (Autor:in)
Journal of Geodesy ; 72
1998
Aufsatz (Zeitschrift)
Englisch
BKL:
38.73
Geodäsie
Generalization of the Abel-Poisson method for summations of Fourier trigonometric series
British Library Online Contents | 2014
|On a Generalization of the Abel Integral Equation
NTIS | 1966
|TIBKAT | 1776
|