Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Monitoring storm-enhanced density using IGS reference station data
Abstract Storm-enhanced density (SED) is a geomagnetic storm phenomenon, characterized by a plume of enhanced total electron content (TEC) that initially moves poleward and sunward extending out from a larger region of enhanced TEC in the mid-latitudes. SED is associated with extreme mid-latitude space weather effects. Sharp gradients in the TEC are found along the borders of SED plumes and at the boundaries of the larger TEC region (the base of the plume). These large TEC gradients can cause significant errors in DGPS and WADGPS positioning and can result in serious consequences for applications such as railway control, highway traffic management, emergency response, commercial aviation and marine navigation, all of which require high precision, real-time positioning. Data from the global IGS network of GPS receivers have enabled the spatial and temporal visualization of these SED plumes, allowing ionospheric researchers to study this phenomenon and investigate the potential for developing prediction techniques and real-time warning systems. GPS TEC maps provided by analysis of the data from the IGS network have now been widely disseminated throughout the atmospheric research community and have become one of the standard means of studying the effects of geomagnetic storms on the ionosphere. These maps have enabled researchers to identify that the SED phenomenon occurs globally, is associated with large TEC gradients (at times greater than 100 TEC units per degree latitude), and is a magnetically conjugate phenomenon. This paper reports on the recent advances in our understanding of the SED phenomenon enabled by GPS observations.
Monitoring storm-enhanced density using IGS reference station data
Abstract Storm-enhanced density (SED) is a geomagnetic storm phenomenon, characterized by a plume of enhanced total electron content (TEC) that initially moves poleward and sunward extending out from a larger region of enhanced TEC in the mid-latitudes. SED is associated with extreme mid-latitude space weather effects. Sharp gradients in the TEC are found along the borders of SED plumes and at the boundaries of the larger TEC region (the base of the plume). These large TEC gradients can cause significant errors in DGPS and WADGPS positioning and can result in serious consequences for applications such as railway control, highway traffic management, emergency response, commercial aviation and marine navigation, all of which require high precision, real-time positioning. Data from the global IGS network of GPS receivers have enabled the spatial and temporal visualization of these SED plumes, allowing ionospheric researchers to study this phenomenon and investigate the potential for developing prediction techniques and real-time warning systems. GPS TEC maps provided by analysis of the data from the IGS network have now been widely disseminated throughout the atmospheric research community and have become one of the standard means of studying the effects of geomagnetic storms on the ionosphere. These maps have enabled researchers to identify that the SED phenomenon occurs globally, is associated with large TEC gradients (at times greater than 100 TEC units per degree latitude), and is a magnetically conjugate phenomenon. This paper reports on the recent advances in our understanding of the SED phenomenon enabled by GPS observations.
Monitoring storm-enhanced density using IGS reference station data
Coster, A. (Autor:in) / Skone, S. (Autor:in)
Journal of Geodesy ; 83
2009
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Monitoring storm-enhanced density using IGS reference station data
Online Contents | 2009
|Studies of storm-enhanced density impact on DGPS using IGS reference station data
Online Contents | 2009
|Studies of storm-enhanced density impact on DGPS using IGS reference station data
Online Contents | 2009
|Generalized Method for Storm-Water Pumping Station Design
British Library Online Contents | 2010
|Generalized Method for Storm-Water Pumping Station Design
Online Contents | 2010
|