Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Does traffic noise alter calling time in frogs and toads? A case study of anurans in Eastern Ontario, Canada
Abstract In habitats disturbed by anthropogenic noise, acoustically communicating species may develop behavioral responses that help them transmit information and overcome signal masking. We studied four anuran species breeding in wetlands, ponds, and ditches near a highway in eastern Ontario, Canada, to test whether they called more often when traffic noise intensity was lower, and stopped calling when the noise intensity increased (i.e., gap calling behavior). We made call recordings between April and July 2011, and compared the traffic noise intensity (sound pressure level) between times when the anurans were calling and times when they were not calling. We found that the two species with the highest call peak frequency (American toad, gray treefrog) called randomly with regard to traffic noise intensity. In contrast, the two species with the lowest call peak frequency (green frog, bullfrog) called more often when traffic noise intensity was low. The behavioral response in the two latter species likely represents a short-term strategy that enhances their signal-to-noise ratio thereby increasing the chance of effective communication. Our results support predictions derived from the acoustic adaptation hypothesis: low-frequency signals are more prone to be masked by anthropogenic noise and therefore require behavioral adjustments (in this study gap-calling behavior) to ameliorate this effect.
Does traffic noise alter calling time in frogs and toads? A case study of anurans in Eastern Ontario, Canada
Abstract In habitats disturbed by anthropogenic noise, acoustically communicating species may develop behavioral responses that help them transmit information and overcome signal masking. We studied four anuran species breeding in wetlands, ponds, and ditches near a highway in eastern Ontario, Canada, to test whether they called more often when traffic noise intensity was lower, and stopped calling when the noise intensity increased (i.e., gap calling behavior). We made call recordings between April and July 2011, and compared the traffic noise intensity (sound pressure level) between times when the anurans were calling and times when they were not calling. We found that the two species with the highest call peak frequency (American toad, gray treefrog) called randomly with regard to traffic noise intensity. In contrast, the two species with the lowest call peak frequency (green frog, bullfrog) called more often when traffic noise intensity was low. The behavioral response in the two latter species likely represents a short-term strategy that enhances their signal-to-noise ratio thereby increasing the chance of effective communication. Our results support predictions derived from the acoustic adaptation hypothesis: low-frequency signals are more prone to be masked by anthropogenic noise and therefore require behavioral adjustments (in this study gap-calling behavior) to ameliorate this effect.
Does traffic noise alter calling time in frogs and toads? A case study of anurans in Eastern Ontario, Canada
Vargas-Salinas, Fernando (Autor:in) / Cunnington, Glenn M. (Autor:in) / Amézquita, Adolfo (Autor:in) / Fahrig, Lenore (Autor:in)
Urban Ecosystems ; 17
2014
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
BKL:
43.31
Naturschutz
/
42.90$jÖkologie: Allgemeines
/
43.31$jNaturschutz
/
42.90
Ökologie: Allgemeines
/
74.12
Stadtgeographie, Siedlungsgeographie
/
74.12$jStadtgeographie$jSiedlungsgeographie
Toads and frogs of the New River Gorge National River
British Library Conference Proceedings | 1993
|Stormwater basins of the New Jersey coastal plain: Subsidies or sinks for frogs and toads?
Online Contents | 2011
|Development of New Crash Experience Warrants for Traffic Signals in Ontario, Canada
British Library Online Contents | 2006
|