Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Scaling behaviour and dual renormalization of experimental tensile softening responses
Abstract The aim of the present paper is to investigate the scaling behaviour of the experimental tensile softening (or catastrophic) curves and it concludes a series of papers from the same research group published inMaterials and Structures [1–4]. Experimentally, it is evident how these curves become steeper by increasing the size of the specimens (ductile-to-brittle transition). To study this phenomenon, a completely new testing apparatus, made up of three orthogonally placed actuators, was bult at the Politecnico di Torino by the authors [1, 5–7]. This set-up makes it possible to apply a purely tensile force, so that the secondary flexural stresses, if kept under control, constitute a degree of error comparable to the values allowed for normal testing apparatus. The method enables a stress vs. strain curve to be plotted with the descending (softening) branch up to the point where the cross section of the tensile specimen breaks away. The results of a new experimental investigation, performed over a very large scale-range of unnotched concrete specimens (16∶1), will be presented. Particular attention will be paid to the scale effects both on nominal tensile strength and on fracture energy. The renormalized experimental curves will be presented in a load vs. displacement plane characterized by anomalous physical dimensions. The renormalization of experimental curves enables obtaining the same response for all specimen dimensions, and then defining the universal (scale-independent) behaviour of the material.
Scaling behaviour and dual renormalization of experimental tensile softening responses
Abstract The aim of the present paper is to investigate the scaling behaviour of the experimental tensile softening (or catastrophic) curves and it concludes a series of papers from the same research group published inMaterials and Structures [1–4]. Experimentally, it is evident how these curves become steeper by increasing the size of the specimens (ductile-to-brittle transition). To study this phenomenon, a completely new testing apparatus, made up of three orthogonally placed actuators, was bult at the Politecnico di Torino by the authors [1, 5–7]. This set-up makes it possible to apply a purely tensile force, so that the secondary flexural stresses, if kept under control, constitute a degree of error comparable to the values allowed for normal testing apparatus. The method enables a stress vs. strain curve to be plotted with the descending (softening) branch up to the point where the cross section of the tensile specimen breaks away. The results of a new experimental investigation, performed over a very large scale-range of unnotched concrete specimens (16∶1), will be presented. Particular attention will be paid to the scale effects both on nominal tensile strength and on fracture energy. The renormalized experimental curves will be presented in a load vs. displacement plane characterized by anomalous physical dimensions. The renormalization of experimental curves enables obtaining the same response for all specimen dimensions, and then defining the universal (scale-independent) behaviour of the material.
Scaling behaviour and dual renormalization of experimental tensile softening responses
Carpinteri, Alberto (Autor:in) / Ferro, Giuseppe (Autor:in)
1998
Aufsatz (Zeitschrift)
Englisch
Scaling behaviour and dual renormalization of experimental tensile softening responses
Springer Verlag | 1998
|Scaling behaviour and dual renormalisation of the experimental softening responses
Online Contents | 1998
|Scaling behaviour and dual renormalisation of the experimental softening responses
British Library Online Contents | 1998
|High Temperature Effects on Tensile Softening Behaviour of Concrete
British Library Conference Proceedings | 2002
|Size effect on tensile softening relation
Online Contents | 2010
|