Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Laboratory investigation of rheological properties and scaling resistance of air entrained self-consolidating concrete
Abstract An experimental investigation was undertaken to analyze the influence of various admixtures on the rheological properties and scaling resistance of self-consolidating concrete. Such concrete is intended for use as a repair material for filling highly restricted areas, such as forms with closely spaced reinforcing steel bars. Several self-consolidating concrete mixtures having slump flow of 550+50 mm were prepared with water-to-cement ratios varying between 0.35 and 0.41. The mixtures were cast with 0 and 3 percent silica fume, with and without air-entraining admixture. All concretes incorporated superplasticizer and viscosity-modifying admixture to enhance deformability and stability. Rheological parameters (yield value and plastic viscosity) were measured using a concrete viscometer. The air content, unit weight, and consistency were also determined. The consistency was assessed using the slump flow and L-Flow methods. Tests performed on hardened concrete included compressive strength at 28 days (ASTM C 39), scaling resistance (ASTM C 672), durability to freezing and thawing (ASTM C 666) and measurement of the air-void parameters (ASTM C 457). Relationship between the simple slump flow and yield value and plastic viscosity measurements determined using a concrete viscometer are also discussed. In general, the laboratory test results indicate that it is possible to produce a frost durable, self-consolidating concrete with low yield value and high plastic viscosity (for such fluid concrete) which can be use as a repair material to fill highly restricted areas.
Laboratory investigation of rheological properties and scaling resistance of air entrained self-consolidating concrete
Abstract An experimental investigation was undertaken to analyze the influence of various admixtures on the rheological properties and scaling resistance of self-consolidating concrete. Such concrete is intended for use as a repair material for filling highly restricted areas, such as forms with closely spaced reinforcing steel bars. Several self-consolidating concrete mixtures having slump flow of 550+50 mm were prepared with water-to-cement ratios varying between 0.35 and 0.41. The mixtures were cast with 0 and 3 percent silica fume, with and without air-entraining admixture. All concretes incorporated superplasticizer and viscosity-modifying admixture to enhance deformability and stability. Rheological parameters (yield value and plastic viscosity) were measured using a concrete viscometer. The air content, unit weight, and consistency were also determined. The consistency was assessed using the slump flow and L-Flow methods. Tests performed on hardened concrete included compressive strength at 28 days (ASTM C 39), scaling resistance (ASTM C 672), durability to freezing and thawing (ASTM C 666) and measurement of the air-void parameters (ASTM C 457). Relationship between the simple slump flow and yield value and plastic viscosity measurements determined using a concrete viscometer are also discussed. In general, the laboratory test results indicate that it is possible to produce a frost durable, self-consolidating concrete with low yield value and high plastic viscosity (for such fluid concrete) which can be use as a repair material to fill highly restricted areas.
Laboratory investigation of rheological properties and scaling resistance of air entrained self-consolidating concrete
Beaupré, D. (Autor:in) / Lacombe, P. (Autor:in) / Khayat, K. H. (Autor:in)
1999
Aufsatz (Zeitschrift)
Englisch
British Library Online Contents | 1999
|Optimization and Performance of Air-Entrained, Self-Consolidating Concrete
British Library Online Contents | 2000
|Optimization and Performance of Air-Entrained, Self-Consolidating Concrete
Online Contents | 2000
|