Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Phase-Field Modeling of Fracture in Ferroelectric Materials
Abstract This paper presents a family of phase-field models for the coupled simulation of the microstructure formation and evolution, and the nucleation and propagation of cracks in single and polycrystalline ferroelectric materials. The first objective is to introduce a phase-field model for ferroelectric single crystals. The model naturally couples two existing energetic phase-field approaches for brittle fracture and ferroelectric domain formation and evolution. Simulations show the interactions between the microstructure and the crack under mechanical and electromechanical loadings. Another objective of this paper is to encode different crack face boundary conditions into the phase-field framework since these conditions strongly affect the fracture behavior of ferroelectrics. The smeared imposition of these conditions are discussed and the results are compared with that of sharp crack models to validate the proposed approaches. Simulations show the effects of different conditions and electromechanical loadings on the crack propagation. In a third step, the model is modified by introducing a crack non-interpenetration condition in the variational approach to fracture accounting for the asymmetric behavior in tension and compression. The modified model makes it possible to explain anisotropic crack growth in ferroelectrics under the Vickers indentation loading. This model is also employed for the fracture analysis of multilayer ferroelectric actuators, which shows the potential of the model for future applications. The coupled phase-field model is also extended to polycrystals by introducing realistic polycrystalline microstructures in the model. Inter- and trans-granular crack propagation modes are observed in the simulations. Finally, and for completeness, the phase-field theory is extended to the simulation of the propagation of conducting cracks under purely electrical loading and to the three-dimensional simulation of crack propagation in ferroelectric single crystals. Salient features of the crack propagation phenomenon predicted by the simulations of this paper are directly compared with experimental observations.
Phase-Field Modeling of Fracture in Ferroelectric Materials
Abstract This paper presents a family of phase-field models for the coupled simulation of the microstructure formation and evolution, and the nucleation and propagation of cracks in single and polycrystalline ferroelectric materials. The first objective is to introduce a phase-field model for ferroelectric single crystals. The model naturally couples two existing energetic phase-field approaches for brittle fracture and ferroelectric domain formation and evolution. Simulations show the interactions between the microstructure and the crack under mechanical and electromechanical loadings. Another objective of this paper is to encode different crack face boundary conditions into the phase-field framework since these conditions strongly affect the fracture behavior of ferroelectrics. The smeared imposition of these conditions are discussed and the results are compared with that of sharp crack models to validate the proposed approaches. Simulations show the effects of different conditions and electromechanical loadings on the crack propagation. In a third step, the model is modified by introducing a crack non-interpenetration condition in the variational approach to fracture accounting for the asymmetric behavior in tension and compression. The modified model makes it possible to explain anisotropic crack growth in ferroelectrics under the Vickers indentation loading. This model is also employed for the fracture analysis of multilayer ferroelectric actuators, which shows the potential of the model for future applications. The coupled phase-field model is also extended to polycrystals by introducing realistic polycrystalline microstructures in the model. Inter- and trans-granular crack propagation modes are observed in the simulations. Finally, and for completeness, the phase-field theory is extended to the simulation of the propagation of conducting cracks under purely electrical loading and to the three-dimensional simulation of crack propagation in ferroelectric single crystals. Salient features of the crack propagation phenomenon predicted by the simulations of this paper are directly compared with experimental observations.
Phase-Field Modeling of Fracture in Ferroelectric Materials
Abdollahi, Amir (Autor:in) / Arias, Irene (Autor:in)
2014
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
A selective enhanced FE-method for phase field modeling of ferroelectric materials
British Library Online Contents | 2016
|Phase-field modeling of hydraulic fracture
British Library Online Contents | 2016
|Phase-field modeling of ductile fracture
British Library Online Contents | 2015
|