Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Stress Intensity Factors of Semi-Circular Bend Specimens with Straight-Through and Chevron Notches
Abstract Semi-circular bend specimen is one of the useful test specimens for determining fracture toughness of rock and geo-materials. Generally, in rock test specimens, initial cracks are produced in two shapes: straight-edge cracks and chevron notches. In this study, the minimum dimensionless stress intensity factors of semi-circular bend specimen (SCB) with straight-through and chevron notches are calculated. First, using finite element analysis, a suitable relation for the dimensionless stress intensity factor of SCB with straight-through crack is presented based on the normalized crack length and half-distance between supports. For evaluating the validity and accuracy of this relation, the obtained results are then compared with numerical and experimental results reported in the literature. Subsequently, by performing some experiments and also finite element analysis of the SCB specimen with chevron notch, the minimum dimensionless stress intensity factor of this specimen is obtained. Using the new equation for the dimensionless stress intensity factor of SCB with straight-through crack and an analytical method, i.e., Bluhm’s slice synthesis method, the minimum (critical) dimensionless stress intensity factor of chevron notched semi-circular bend specimens is calculated. Good agreement is observed between the results of two mentioned methods.
Stress Intensity Factors of Semi-Circular Bend Specimens with Straight-Through and Chevron Notches
Abstract Semi-circular bend specimen is one of the useful test specimens for determining fracture toughness of rock and geo-materials. Generally, in rock test specimens, initial cracks are produced in two shapes: straight-edge cracks and chevron notches. In this study, the minimum dimensionless stress intensity factors of semi-circular bend specimen (SCB) with straight-through and chevron notches are calculated. First, using finite element analysis, a suitable relation for the dimensionless stress intensity factor of SCB with straight-through crack is presented based on the normalized crack length and half-distance between supports. For evaluating the validity and accuracy of this relation, the obtained results are then compared with numerical and experimental results reported in the literature. Subsequently, by performing some experiments and also finite element analysis of the SCB specimen with chevron notch, the minimum dimensionless stress intensity factor of this specimen is obtained. Using the new equation for the dimensionless stress intensity factor of SCB with straight-through crack and an analytical method, i.e., Bluhm’s slice synthesis method, the minimum (critical) dimensionless stress intensity factor of chevron notched semi-circular bend specimens is calculated. Good agreement is observed between the results of two mentioned methods.
Stress Intensity Factors of Semi-Circular Bend Specimens with Straight-Through and Chevron Notches
Ayatollahi, M. R. (Autor:in) / Mahdavi, E. (Autor:in) / Alborzi, M. J. (Autor:in) / Obara, Y. (Autor:in)
2015
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
BKL:
38.58
Geomechanik
/
56.20
Ingenieurgeologie, Bodenmechanik
/
38.58$jGeomechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
RVK:
ELIB41
Stress Intensity Factors of Semi-Circular Bend Specimens with Straight-Through and Chevron Notches
British Library Online Contents | 2016
|Stress Intensity Factors of Semi-Circular Bend Specimens with Straight-Through and Chevron Notches
Online Contents | 2015
|Fracture toughness measurement using chevron-notched semi-circular bend specimen
British Library Online Contents | 1997
|