Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
The Low Compaction Grading Technique on Steep Reclaimed Slopes: Soil Characterization and Static Slope Stability
Abstract Since the Surface Mining and Control Reclamation Act of 1977, US coal mining companies have been required by law to restore the approximate ground contours that existed prior to mining. To ensure mass stability and limit erosion, the reclaimed materials have traditionally been placed with significant compaction energy. The Forest Reclamation Approach (FRA) is a relatively new approach that has been successfully used to facilitate the fast establishment of native healthy forests. The FRA method specifies the use of low compaction energy in the top 1.2–1.5 m of the contour, which may be in conflict with general considerations for mechanical slope stability. Although successful for reforestation, the stability of FRA slopes has not been fully investigated and a rational stability method has not been identified. Further, a mechanics-based analysis is limited due to the significant amount of oversize particles which makes the sampling and measurement of soil strength properties difficult. To investigate the stability of steep FRA slopes (steeper than 20°), three reclaimed coal mining sites in the Appalachian region of East Tennessee were investigated. The stability was evaluated by several methods to identify the predominant failure modes. The infinite slope method, coupled with the estimation of the shear strength from field observations, was shown to provide a rational means to evaluate the stability of FRA slopes. The analysis results suggest that the low compaction of the surface materials may not compromise the long-term stability for the sites and material properties investigated.
The Low Compaction Grading Technique on Steep Reclaimed Slopes: Soil Characterization and Static Slope Stability
Abstract Since the Surface Mining and Control Reclamation Act of 1977, US coal mining companies have been required by law to restore the approximate ground contours that existed prior to mining. To ensure mass stability and limit erosion, the reclaimed materials have traditionally been placed with significant compaction energy. The Forest Reclamation Approach (FRA) is a relatively new approach that has been successfully used to facilitate the fast establishment of native healthy forests. The FRA method specifies the use of low compaction energy in the top 1.2–1.5 m of the contour, which may be in conflict with general considerations for mechanical slope stability. Although successful for reforestation, the stability of FRA slopes has not been fully investigated and a rational stability method has not been identified. Further, a mechanics-based analysis is limited due to the significant amount of oversize particles which makes the sampling and measurement of soil strength properties difficult. To investigate the stability of steep FRA slopes (steeper than 20°), three reclaimed coal mining sites in the Appalachian region of East Tennessee were investigated. The stability was evaluated by several methods to identify the predominant failure modes. The infinite slope method, coupled with the estimation of the shear strength from field observations, was shown to provide a rational means to evaluate the stability of FRA slopes. The analysis results suggest that the low compaction of the surface materials may not compromise the long-term stability for the sites and material properties investigated.
The Low Compaction Grading Technique on Steep Reclaimed Slopes: Soil Characterization and Static Slope Stability
Jeldes, Isaac A. (Autor:in) / Drumm, Eric C. (Autor:in) / Schwartz, John S. (Autor:in)
2013
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
BKL:
57.00$jBergbau: Allgemeines
/
38.58
Geomechanik
/
57.00
Bergbau: Allgemeines
/
56.20
Ingenieurgeologie, Bodenmechanik
/
38.58$jGeomechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
British Library Online Contents | 2013
|Slope stability analysis for steep soil slopes
British Library Conference Proceedings | 2004
|Partial Saturation and Seismicity on Steep Reclaimed Slopes
Online Contents | 2014
|Partial Saturation and Seismicity on Steep Reclaimed Slopes
British Library Online Contents | 2014
|