Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Abstract Kinematic and static analysis of geotechnical problems using the DEM has been widely accepted in the research arena for many years; however, its routine use in geotechnical practice for slope stability analysis still remains limited. This study focuses on the behavior of cohesive soil slopes undergoing failure initiation and succedent run-out. The numerical simulations of a supposititious slope composed of homogeneous cohesive soil were conducted using the DEM. The cohesive soil was simulated using contact-bonded graded aggregates of diameters ranging from 80 to 160 mm. This study investigated the microcrack-growth, particle displacements, particle movement and porosity changes within the slope fill. The simulation results showed that the failure mechanism is a rotational one at the failure initiation stage and gradually transfer to a slide/flow mode as progressive failure occurs. The porosity of deposit mass increased remarkably as result of dilation and block void. The run-out behavior of failure mass is not very sensitive with the viscous damping constant.
Abstract Kinematic and static analysis of geotechnical problems using the DEM has been widely accepted in the research arena for many years; however, its routine use in geotechnical practice for slope stability analysis still remains limited. This study focuses on the behavior of cohesive soil slopes undergoing failure initiation and succedent run-out. The numerical simulations of a supposititious slope composed of homogeneous cohesive soil were conducted using the DEM. The cohesive soil was simulated using contact-bonded graded aggregates of diameters ranging from 80 to 160 mm. This study investigated the microcrack-growth, particle displacements, particle movement and porosity changes within the slope fill. The simulation results showed that the failure mechanism is a rotational one at the failure initiation stage and gradually transfer to a slide/flow mode as progressive failure occurs. The porosity of deposit mass increased remarkably as result of dilation and block void. The run-out behavior of failure mass is not very sensitive with the viscous damping constant.
Initiation and Displacement Analysis of Cohesive Soil Slopes by Discrete Element Modelling
2016
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
BKL:
57.00$jBergbau: Allgemeines
/
38.58
Geomechanik
/
57.00
Bergbau: Allgemeines
/
56.20
Ingenieurgeologie, Bodenmechanik
/
38.58$jGeomechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
Initiation and Displacement Analysis of Cohesive Soil Slopes by Discrete Element Modelling
Online Contents | 2016
|Initiation and Displacement Analysis of Cohesive Soil Slopes by Discrete Element Modelling
British Library Online Contents | 2017
|Seismic Stability of Cohesive Soil Slopes
British Library Conference Proceedings | 1995
|Stability of Slopes in Cohesive Friction Soil
British Library Conference Proceedings | 1992
|Risk Based Design of Cohesive Soil Slopes
British Library Conference Proceedings | 2000
|