Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Practical Use of Modified Hoek–Brown Criterion for Soil Slope Stability Analysis
Abstract Many slopes are comprised of soils that exhibit a nonlinear shear strength or failure envelope, and multiple mathematical relationships have been developed to account for this nonlinearity. At the same time, the numerical shear strength reduction (SSR) method has become a common method for analyzing the stability of slopes. Despite these developments, a practical, commercially available method to include nonlinear shear strength in numerical analysis has not been established for soil. The Generalized Hoek–Brown (GHB) model provides a nonlinear failure criterion, but is formulated for use with rock. This paper proposes a Modified Hoek–Brown (MHB) criterion to make the model applicable to soil and leverage the GHB criterion present in many numerical analysis packages. Past applications of SSR to the GHB are discussed and a numerical method for reduction of the parameters in the context of soil slopes is proposed. A simple wedge analysis validates the MHB method for a linear envelope. Three examples of increasing complexity compare results of limit equilibrium with both finite element and finite difference SSR analyses. In general, the different numerical methods yield very similar results. The SSR method using MHB predicts critical strength reduction factors 2–5% lower than the limit equilibrium factors of safety. The approach presented in this paper allows practitioners to model nonlinear shear strength in finite element strength reduction analysis for cases where this nonlinearity is judged to be an important factor.
Practical Use of Modified Hoek–Brown Criterion for Soil Slope Stability Analysis
Abstract Many slopes are comprised of soils that exhibit a nonlinear shear strength or failure envelope, and multiple mathematical relationships have been developed to account for this nonlinearity. At the same time, the numerical shear strength reduction (SSR) method has become a common method for analyzing the stability of slopes. Despite these developments, a practical, commercially available method to include nonlinear shear strength in numerical analysis has not been established for soil. The Generalized Hoek–Brown (GHB) model provides a nonlinear failure criterion, but is formulated for use with rock. This paper proposes a Modified Hoek–Brown (MHB) criterion to make the model applicable to soil and leverage the GHB criterion present in many numerical analysis packages. Past applications of SSR to the GHB are discussed and a numerical method for reduction of the parameters in the context of soil slopes is proposed. A simple wedge analysis validates the MHB method for a linear envelope. Three examples of increasing complexity compare results of limit equilibrium with both finite element and finite difference SSR analyses. In general, the different numerical methods yield very similar results. The SSR method using MHB predicts critical strength reduction factors 2–5% lower than the limit equilibrium factors of safety. The approach presented in this paper allows practitioners to model nonlinear shear strength in finite element strength reduction analysis for cases where this nonlinearity is judged to be an important factor.
Practical Use of Modified Hoek–Brown Criterion for Soil Slope Stability Analysis
VandenBerge, Daniel R. (Autor:in) / McGuire, Michael P. (Autor:in)
2019
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
BKL:
57.00$jBergbau: Allgemeines
/
38.58
Geomechanik
/
57.00
Bergbau: Allgemeines
/
56.20
Ingenieurgeologie, Bodenmechanik
/
38.58$jGeomechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
Practical Use of Modified Hoek–Brown Criterion for Soil Slope Stability Analysis
Online Contents | 2019
|Infinite Rock Slope Analysis with Hoek–Brown Failure Criterion
Online Contents | 2023
|Slice Method for Rock Slope Stability Analysis Based on the Hoek–Brown Criterion
DOAJ | 2015
|Modified Hoek–Brown criterion for nonlinear strength of frozen soil
Online Contents | 2013
|Rock slope stability analysis under Hoek–Brown failure criterion with different flow rules
Springer Verlag | 2024
|