Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
System reliability analysis of soil nail wall using random finite element method
Abstract Soil nail wall is a compound system which for safety margin determination, consideration of safety factors of its components and their correlations is required. In this paper, considering a real site using the random finite element method (RFEM), the reliability indices of global stability, lateral displacement stability, tensile strength, and pullout resistance stability as components of the soil nail wall system are obtained. In another section of the paper, using the sequential compounding method (SCM), the importance of the mentioned stability modes and their effects on system reliability and system probability of failure are represented. Results show that the most considerable interdependence is between the global and lateral displacement stabilities. Among the reliability indices of the components, the minimum one is attributed to the pullout resistance. Furthermore, the uppermost row of the nails has the most critical reliability index compared with the others. The locations of the slip surfaces and nail intersections varied from 0.05–0.90 of the nail length, which means that the uncertainty of the soil parameters has the most significant effect on the pullout resistance safety factor of the nails. The performance level of the soil nail wall decreases from below average to poor when the soil nail wall is considered to be a system with series components.
System reliability analysis of soil nail wall using random finite element method
Abstract Soil nail wall is a compound system which for safety margin determination, consideration of safety factors of its components and their correlations is required. In this paper, considering a real site using the random finite element method (RFEM), the reliability indices of global stability, lateral displacement stability, tensile strength, and pullout resistance stability as components of the soil nail wall system are obtained. In another section of the paper, using the sequential compounding method (SCM), the importance of the mentioned stability modes and their effects on system reliability and system probability of failure are represented. Results show that the most considerable interdependence is between the global and lateral displacement stabilities. Among the reliability indices of the components, the minimum one is attributed to the pullout resistance. Furthermore, the uppermost row of the nails has the most critical reliability index compared with the others. The locations of the slip surfaces and nail intersections varied from 0.05–0.90 of the nail length, which means that the uncertainty of the soil parameters has the most significant effect on the pullout resistance safety factor of the nails. The performance level of the soil nail wall decreases from below average to poor when the soil nail wall is considered to be a system with series components.
System reliability analysis of soil nail wall using random finite element method
Johari, A. (Autor:in) / Hajivand, A. Khosravi (Autor:in) / Binesh, S.M. (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
BKL:
56.00$jBauwesen: Allgemeines
/
38.58
Geomechanik
/
38.58$jGeomechanik
/
56.20
Ingenieurgeologie, Bodenmechanik
/
56.00
Bauwesen: Allgemeines
/
56.20$jIngenieurgeologie$jBodenmechanik
RVK:
ELIB18
System reliability assessment of soil nail walls
British Library Online Contents | 2018
|Soil Nail Wall Design Using Simplified Charts
TIBKAT | 2022
|