Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Design equation for stability of shallow unlined circular tunnels in Hoek-Brown rock masses
Abstract Safety assessment is one critical issue for constructions of tunnels and requires a reliable and accurate stability analysis. At present, a large number of researches in stability analyses of tunneling in rock masses have been conducted; however, a lack of an accurate and reliable design equation for the tunnel stability prediction is obvious. This paper presents a new design equation for stability analyses of shallow unlined circular tunnels in rock masses obeying the Generalized Hoek-Brown failure criterion. Because of the complexity of the problem’s nature, a closed-formed analytical solution of the problem is not possible to be achieved. Hence, the computational framework of the finite element limit analysis is selected to numerically derive the upper and lower bound solutions of the problem. A complete set of the dimensionless parameters covering the shallow cover-depth ratios of tunnels, the normalized uniaxial compressive strength of intact rocks, and the Hoek-Brown material parameters are comprehensively investigated. A new design equation for stability analyses of shallow unlined circular tunnels in rock masses is developed by employing a nonlinear regression analysis to the numerically derived average bound solutions. It is found that the proposed new design equation is highly accurate and provides a convenient and reliable tool for stability analyses of shallow unlined tunnels in rock masses in practice.
Design equation for stability of shallow unlined circular tunnels in Hoek-Brown rock masses
Abstract Safety assessment is one critical issue for constructions of tunnels and requires a reliable and accurate stability analysis. At present, a large number of researches in stability analyses of tunneling in rock masses have been conducted; however, a lack of an accurate and reliable design equation for the tunnel stability prediction is obvious. This paper presents a new design equation for stability analyses of shallow unlined circular tunnels in rock masses obeying the Generalized Hoek-Brown failure criterion. Because of the complexity of the problem’s nature, a closed-formed analytical solution of the problem is not possible to be achieved. Hence, the computational framework of the finite element limit analysis is selected to numerically derive the upper and lower bound solutions of the problem. A complete set of the dimensionless parameters covering the shallow cover-depth ratios of tunnels, the normalized uniaxial compressive strength of intact rocks, and the Hoek-Brown material parameters are comprehensively investigated. A new design equation for stability analyses of shallow unlined circular tunnels in rock masses is developed by employing a nonlinear regression analysis to the numerically derived average bound solutions. It is found that the proposed new design equation is highly accurate and provides a convenient and reliable tool for stability analyses of shallow unlined tunnels in rock masses in practice.
Design equation for stability of shallow unlined circular tunnels in Hoek-Brown rock masses
Keawsawasvong, Suraparb (Autor:in) / Ukritchon, Boonchai (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
BKL:
56.00$jBauwesen: Allgemeines
/
38.58
Geomechanik
/
38.58$jGeomechanik
/
56.20
Ingenieurgeologie, Bodenmechanik
/
56.00
Bauwesen: Allgemeines
/
56.20$jIngenieurgeologie$jBodenmechanik
RVK:
ELIB18
Stability of unlined square tunnels in Hoek-Brown rock masses based on lower bound analysis
British Library Online Contents | 2019
|Design Equations for Predicting Stability of Unlined Horseshoe Tunnels in Rock Masses
DOAJ | 2022
|Hydraulic Design of Unlined Rock Tunnels
ASCE | 2021
|Hydraulic design of unlined rock tunnels
Engineering Index Backfile | 1969
|