Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Experimental Study on the Mechanical Behavior of Rock Bolts Subjected to Complex Static and Dynamic Loads
Abstract In underground mining practice, the rock bolt support system is the major support pattern to control the deformation and stability of openings. A rock bolt is generally subjected to complex loads including tension, torsion, bending and shear, which result from the deformation of excavations and exposure to dynamic loads that are generated by rockbursts. An understanding of the response of rock bolt under complex conditions is of great importance for rock bolt support design and practice. New sophisticated equipment has been developed for this purpose. This work involved a comprehensive experimental study on the mechanical behavior of rock bolts under complex loads. The results show that rock bolt pre-tensioning by torque application to the nut can result in decreases in tensile strength and elongation because the rock bolt is subjected to a combination of tension and distortion. When a pre-tensioned rock bolt is subjected to a shear load, the maximum shear force can reach up to 80% of the tensile capacity of the rock bolt. Higher impact energy results in a longer period of dynamic loading and a larger irreversible plastic deformation on the rock bolt, in contrast to a rock bolt that is subjected to low impact energy. The capacity and especially the deformation capacity of a rock bolt may decrease significantly after successive containment of the deformation of the surrounding rock mass from rockbursts.
Experimental Study on the Mechanical Behavior of Rock Bolts Subjected to Complex Static and Dynamic Loads
Abstract In underground mining practice, the rock bolt support system is the major support pattern to control the deformation and stability of openings. A rock bolt is generally subjected to complex loads including tension, torsion, bending and shear, which result from the deformation of excavations and exposure to dynamic loads that are generated by rockbursts. An understanding of the response of rock bolt under complex conditions is of great importance for rock bolt support design and practice. New sophisticated equipment has been developed for this purpose. This work involved a comprehensive experimental study on the mechanical behavior of rock bolts under complex loads. The results show that rock bolt pre-tensioning by torque application to the nut can result in decreases in tensile strength and elongation because the rock bolt is subjected to a combination of tension and distortion. When a pre-tensioned rock bolt is subjected to a shear load, the maximum shear force can reach up to 80% of the tensile capacity of the rock bolt. Higher impact energy results in a longer period of dynamic loading and a larger irreversible plastic deformation on the rock bolt, in contrast to a rock bolt that is subjected to low impact energy. The capacity and especially the deformation capacity of a rock bolt may decrease significantly after successive containment of the deformation of the surrounding rock mass from rockbursts.
Experimental Study on the Mechanical Behavior of Rock Bolts Subjected to Complex Static and Dynamic Loads
Kang, Hongpu (Autor:in) / Yang, Jinghe (Autor:in) / Gao, Fuqiang (Autor:in) / Li, Jianzhong (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
BKL:
38.58
Geomechanik
/
56.20
Ingenieurgeologie, Bodenmechanik
/
38.58$jGeomechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
RVK:
ELIB41
Mechanical behavior of rock-shotcrete interface under static and dynamic tensile loads
British Library Online Contents | 2017
|DOAJ | 2023
|Research of static and dynamic load of long rock bolts
British Library Conference Proceedings | 1994
|Behavior of Fiber Glass Bolts, Rock Bolts and Cable Bolts in Shear
Online Contents | 2016
|