Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Microstructural properties and compressive strength of lime or/and cement solidified silt: a multi-scale study
Abstract Because of its poor engineering properties, silt often needs to be treated to meet the design requirements. Solidification using binder is one of the most common methods to improve the engineering properties of silt. Lime or/and cement are often used to treat silt. However, the mechanical properties of soil are closely related to its microstructure. Although much research has been done on the mechanical properties and stabilization mechanism of lime or/and cement solidified silt, the multi-scale research between the microstructure and macroscopic mechanics properties of solidified silt has received no attention. Therefore, in this paper, unconfined compression, mercury intrusion, and scanning electron microscope (SEM) tests were conducted on lime, cement, and lime and cement mixtures (LC) solidified silt. The microstructure parameters of particle, pore, and contact zone were extracted from SEM images. Meanwhile, the effect of curing time and binder dosage on the microstructure parameters was analyzed. In addition, the relationship between micro-parameters and macro-mechanical strength was established. The results showed that the particle diameter, particle area, contact zone diameter, and contact zone area increased with increasing curing time and binder dosage, while the pore ratio, fractal dimension of particle size distribution (PSD), and fractal dimension of contact zone size distribution (CZSD) decreased with increasing binder dosage. The unconfined compressive strength (UCS) decreased with the increase of particle roundness, pore area, pore diameter, pore ratio, and fractal dimension of PSD, and increased with increasing fractal dimension of pore size distribution (PPSD). In addition, there were no obvious relationships between UCS and pore roundness, contact zone area, and fractal dimension of CZSD.
Microstructural properties and compressive strength of lime or/and cement solidified silt: a multi-scale study
Abstract Because of its poor engineering properties, silt often needs to be treated to meet the design requirements. Solidification using binder is one of the most common methods to improve the engineering properties of silt. Lime or/and cement are often used to treat silt. However, the mechanical properties of soil are closely related to its microstructure. Although much research has been done on the mechanical properties and stabilization mechanism of lime or/and cement solidified silt, the multi-scale research between the microstructure and macroscopic mechanics properties of solidified silt has received no attention. Therefore, in this paper, unconfined compression, mercury intrusion, and scanning electron microscope (SEM) tests were conducted on lime, cement, and lime and cement mixtures (LC) solidified silt. The microstructure parameters of particle, pore, and contact zone were extracted from SEM images. Meanwhile, the effect of curing time and binder dosage on the microstructure parameters was analyzed. In addition, the relationship between micro-parameters and macro-mechanical strength was established. The results showed that the particle diameter, particle area, contact zone diameter, and contact zone area increased with increasing curing time and binder dosage, while the pore ratio, fractal dimension of particle size distribution (PSD), and fractal dimension of contact zone size distribution (CZSD) decreased with increasing binder dosage. The unconfined compressive strength (UCS) decreased with the increase of particle roundness, pore area, pore diameter, pore ratio, and fractal dimension of PSD, and increased with increasing fractal dimension of pore size distribution (PPSD). In addition, there were no obvious relationships between UCS and pore roundness, contact zone area, and fractal dimension of CZSD.
Microstructural properties and compressive strength of lime or/and cement solidified silt: a multi-scale study
Pu, Shaoyun (Autor:in) / Zhu, Zhiduo (Autor:in) / Zhao, Liming (Autor:in) / Song, Weilong (Autor:in) / Wan, Yu (Autor:in) / Huo, Wangwen (Autor:in) / Wang, Hairong (Autor:in) / Yao, Kai (Autor:in) / Hu, Lele (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
BKL:
56.00$jBauwesen: Allgemeines
/
38.58
Geomechanik
/
38.58$jGeomechanik
/
56.20
Ingenieurgeologie, Bodenmechanik
/
56.00
Bauwesen: Allgemeines
/
56.20$jIngenieurgeologie$jBodenmechanik
RVK:
ELIB18
Taylor & Francis Verlag | 2022
|Stabilisation of estuarine silt with lime and/or cement
Elsevier | 2010
|Strength and Solidification Mechanism of Silt Solidified by Polyurethane
DOAJ | 2020
|