Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Research on Excavation and Stability of Deep High Stress Chamber Group: A Case Study of Anju Coal Mine
Abstract As the underground transportation hub and power center, the stability of chamber group is one of the key points of coal mine construction. With the increasing of mining depth, it is more and more difficult to control the stability of roadway and chamber in coal mine, especially in the mining process. Because the excavation of chamber group is a dynamic and multi factor coupling process of, it is necessary to adopt dynamic construction mechanics to optimize the excavation scheme. Therefore, based on the engineering background of − 1155 m level at Anju coal mine in Shandong, the numerical model of deep high stress chamber group is established. Then the interaction of adjacent roadways in the process of excavation and the stress superposition of chamber intersection are studied. The excavation process of the chamber group is divided into three phases, and the construction optimization scheme is formulated. Through numerical simulation, the stress and plastic zone of each excavation scheme are analyzed, and the optimal construction sequence of each phase is determined. Finally, through the field implementation and engineering application, the optimal excavation scheme of tunnel group design is proved. The results provide a scientific basis for the excavation of deep high stress caverns and the improvement of surrounding rock support. At the same time, it also has a good reference significance for other similar underground engineering.
Research on Excavation and Stability of Deep High Stress Chamber Group: A Case Study of Anju Coal Mine
Abstract As the underground transportation hub and power center, the stability of chamber group is one of the key points of coal mine construction. With the increasing of mining depth, it is more and more difficult to control the stability of roadway and chamber in coal mine, especially in the mining process. Because the excavation of chamber group is a dynamic and multi factor coupling process of, it is necessary to adopt dynamic construction mechanics to optimize the excavation scheme. Therefore, based on the engineering background of − 1155 m level at Anju coal mine in Shandong, the numerical model of deep high stress chamber group is established. Then the interaction of adjacent roadways in the process of excavation and the stress superposition of chamber intersection are studied. The excavation process of the chamber group is divided into three phases, and the construction optimization scheme is formulated. Through numerical simulation, the stress and plastic zone of each excavation scheme are analyzed, and the optimal construction sequence of each phase is determined. Finally, through the field implementation and engineering application, the optimal excavation scheme of tunnel group design is proved. The results provide a scientific basis for the excavation of deep high stress caverns and the improvement of surrounding rock support. At the same time, it also has a good reference significance for other similar underground engineering.
Research on Excavation and Stability of Deep High Stress Chamber Group: A Case Study of Anju Coal Mine
Zhang, Feng (Autor:in) / Liu, Jinxiao (Autor:in) / Zhang, Xu (Autor:in) / Ni, Haiming (Autor:in) / Liu, Yongle (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
BKL:
57.00$jBergbau: Allgemeines
/
38.58
Geomechanik
/
57.00
Bergbau: Allgemeines
/
56.20
Ingenieurgeologie, Bodenmechanik
/
38.58$jGeomechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
High-Stress Chamber Stability in Kilometer-Deep Coal Mines: A Case Study
Springer Verlag | 2024
|Disturbance Effects by Excavation of Neighboring Roadways in Deep Coal Mine
Trans Tech Publications | 2013
|Disturbance Effects by Excavation of Neighboring Roadways in Deep Coal Mine
British Library Conference Proceedings | 2013
|Rapid Excavation Research of Half Coal Rock Lane in Liu-Wan Mine
Tema Archiv | 2012
|