Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
The role of carbide lime and fly ash blends on the geotechnical properties of clay soils
Abstract Carbide lime is a by-product obtained during the manufacturing of acetylene from the reaction of calcium carbide and water. A major portion of carbide lime is dumped in waste deposition areas, creating an environmental problem. Carbide lime and fly ash have possible applications in slope stabilization, subgrade improvement of roads, and soil treatments under shallow foundations. A series of Atterberg limits tests, compaction tests, unconfined compressive strength tests, ultrasonic pulse velocity tests, and wetting–drying tests were performed on carbide lime and fly ash treated clay soils to evaluate the effects of additive content, curing time, strength development, and the effects of wetting and drying. A total of 8% of carbide lime constituted the fixation point, and peak strength was achieved at 12% carbide lime content. A total amount of 25% additive was found as a threshold changing the Atterberg limits. Test results indicated that the strength of the treated soil improved by the existence of carbide lime and fly ash; best performance was observed in 28-day specimens with 10% carbide lime and 20% fly ash content reaching to 8 times larger strength than untreated soil. The failure patterns of the specimens reflected the curing time and wetting–drying effects. Although, the application of wetting–drying cycles deteriorated the treated soil, the presence of carbide lime partially prevented the strength loss. New relationships between normalized strength and curing time depending on carbide lime content were proposed. Furthermore, a linear relationship between the unconfined compressive strength and the ultrasonic pulse velocity of the treated soils was established.
The role of carbide lime and fly ash blends on the geotechnical properties of clay soils
Abstract Carbide lime is a by-product obtained during the manufacturing of acetylene from the reaction of calcium carbide and water. A major portion of carbide lime is dumped in waste deposition areas, creating an environmental problem. Carbide lime and fly ash have possible applications in slope stabilization, subgrade improvement of roads, and soil treatments under shallow foundations. A series of Atterberg limits tests, compaction tests, unconfined compressive strength tests, ultrasonic pulse velocity tests, and wetting–drying tests were performed on carbide lime and fly ash treated clay soils to evaluate the effects of additive content, curing time, strength development, and the effects of wetting and drying. A total of 8% of carbide lime constituted the fixation point, and peak strength was achieved at 12% carbide lime content. A total amount of 25% additive was found as a threshold changing the Atterberg limits. Test results indicated that the strength of the treated soil improved by the existence of carbide lime and fly ash; best performance was observed in 28-day specimens with 10% carbide lime and 20% fly ash content reaching to 8 times larger strength than untreated soil. The failure patterns of the specimens reflected the curing time and wetting–drying effects. Although, the application of wetting–drying cycles deteriorated the treated soil, the presence of carbide lime partially prevented the strength loss. New relationships between normalized strength and curing time depending on carbide lime content were proposed. Furthermore, a linear relationship between the unconfined compressive strength and the ultrasonic pulse velocity of the treated soils was established.
The role of carbide lime and fly ash blends on the geotechnical properties of clay soils
Eskisar, Tugba (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
BKL:
56.00$jBauwesen: Allgemeines
/
38.58
Geomechanik
/
38.58$jGeomechanik
/
56.20
Ingenieurgeologie, Bodenmechanik
/
56.00
Bauwesen: Allgemeines
/
56.20$jIngenieurgeologie$jBodenmechanik
RVK:
ELIB18
Improvement of Geotechnical Characteristics of Clay Soils Using Lime
Trans Tech Publications | 2015
|Improvement of Geotechnical Characteristics of Clay Soils Using Lime
British Library Conference Proceedings | 2015
|Geotechnical properties of lime-treated gypseous soils
Online Contents | 2014
|Geotechnical properties and microstructure of lime-stabilized silt clay
Online Contents | 2018
|