Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Effect of microbial-induced calcite precipitation towards strength and permeability of peat
Abstract Peat is known as problematic ground with low bearing capacity and extensively high compressibility. Bio-cementation or commonly known as microbial-induced calcite precipitation (MICP) has been recently introduced as a ground improvement alternative for peat under waterlogged condition. Using isolated bacteria strains P19 and P21 from tropical peat, it is found that unconfined compression strength (UCS) increases with bacteria concentration at a reducing rate. A maximum unconfined compressive strength of 82.05 kPa was measured with bacteria strain P21 at $ 10^{8} $ CFU/mL. For the range of cementation reagent varying from 0.1 to 4.0 mol/kg, the largest strength improvement occurred at 1 mol/kg and 2 mol/kg using indigenous bacteria and bacteria strain P21, respectively, for peat with sand content of 25%. At 4.0 mol/kg, the cementation reagent has detrimental effect to MICP resulting in significant reduction in strength. Due to MICP, the UCS of peat increases with sand content. Calcium carbonate precipitation results in a reduction of permeability and an increment of strength of peat–sand mixture under a submerged condition up to 28 days.
Effect of microbial-induced calcite precipitation towards strength and permeability of peat
Abstract Peat is known as problematic ground with low bearing capacity and extensively high compressibility. Bio-cementation or commonly known as microbial-induced calcite precipitation (MICP) has been recently introduced as a ground improvement alternative for peat under waterlogged condition. Using isolated bacteria strains P19 and P21 from tropical peat, it is found that unconfined compression strength (UCS) increases with bacteria concentration at a reducing rate. A maximum unconfined compressive strength of 82.05 kPa was measured with bacteria strain P21 at $ 10^{8} $ CFU/mL. For the range of cementation reagent varying from 0.1 to 4.0 mol/kg, the largest strength improvement occurred at 1 mol/kg and 2 mol/kg using indigenous bacteria and bacteria strain P21, respectively, for peat with sand content of 25%. At 4.0 mol/kg, the cementation reagent has detrimental effect to MICP resulting in significant reduction in strength. Due to MICP, the UCS of peat increases with sand content. Calcium carbonate precipitation results in a reduction of permeability and an increment of strength of peat–sand mixture under a submerged condition up to 28 days.
Effect of microbial-induced calcite precipitation towards strength and permeability of peat
Phang, Ignatius Ren Kai (Autor:in) / Wong, Kwong Soon (Autor:in) / Chan, Yen San (Autor:in) / Lau, Sie Yon (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
BKL:
56.00$jBauwesen: Allgemeines
/
38.58
Geomechanik
/
38.58$jGeomechanik
/
56.20
Ingenieurgeologie, Bodenmechanik
/
56.00
Bauwesen: Allgemeines
/
56.20$jIngenieurgeologie$jBodenmechanik
RVK:
ELIB18
Permeability Reduction Due to Microbial Induced Calcite Precipitation in Sand
British Library Conference Proceedings | 2016
|Strength improvement in silty clay by microbial-induced calcite precipitation
Online Contents | 2021
|Effect of microbial-induced calcite precipitation on shear strength of gold mine tailings
Online Contents | 2023
|Liquefaction Mitigation Using Microbial Induced Calcite Precipitation
British Library Conference Proceedings | 2012
|