Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Flexural toppling characteristics of anti-dip soft rock slope with base friction test
Abstract As one of the primary failure modes in the anti-dip soft rock slope, the research of flexural toppling is mainly focused on the deformation and failure mechanism. To recreate the whole flexural toppling process of the anti-dip soft rock slopes with different slope angles and rock stratum dip angles, the indoor base friction physical model tests were carried out based on the similarity ratio theory in this study. Based on the macroscopic phenomenon analysis, the displacement vector cloud plots, and the displacement–time curves during the tests are obtained, here are some conclusions. The main results are as follows: According to the flexural toppling deformation characteristics of the anti-dip soft rock slope, the tensile crack formed along the rock stratum on the middle and trailing edge of the slope crest, and it was caused by the differential deformation of the rock stratum; the toppling process can be divided into three stages: the initial deformation stage, the uniform deformation stage, and the accelerated deformation stage, while the anti-dip soft rock slope can be spatially divided into four zones: the stability zone, the active toppling tensile zone, the passive toppling tensile zone, and the shearing zone.
Flexural toppling characteristics of anti-dip soft rock slope with base friction test
Abstract As one of the primary failure modes in the anti-dip soft rock slope, the research of flexural toppling is mainly focused on the deformation and failure mechanism. To recreate the whole flexural toppling process of the anti-dip soft rock slopes with different slope angles and rock stratum dip angles, the indoor base friction physical model tests were carried out based on the similarity ratio theory in this study. Based on the macroscopic phenomenon analysis, the displacement vector cloud plots, and the displacement–time curves during the tests are obtained, here are some conclusions. The main results are as follows: According to the flexural toppling deformation characteristics of the anti-dip soft rock slope, the tensile crack formed along the rock stratum on the middle and trailing edge of the slope crest, and it was caused by the differential deformation of the rock stratum; the toppling process can be divided into three stages: the initial deformation stage, the uniform deformation stage, and the accelerated deformation stage, while the anti-dip soft rock slope can be spatially divided into four zones: the stability zone, the active toppling tensile zone, the passive toppling tensile zone, and the shearing zone.
Flexural toppling characteristics of anti-dip soft rock slope with base friction test
Beng, Xingtao (Autor:in) / Zhang, Guangcheng (Autor:in) / Yang, Yichen (Autor:in) / Zhu, Chun (Autor:in) / Karakus, Murat (Autor:in) / Wang, Dasheng (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
BKL:
56.00$jBauwesen: Allgemeines
/
38.58
Geomechanik
/
38.58$jGeomechanik
/
56.20
Ingenieurgeologie, Bodenmechanik
/
56.00
Bauwesen: Allgemeines
/
56.20$jIngenieurgeologie$jBodenmechanik
RVK:
ELIB18
Flexural Toppling Mechanism and Stability Analysis of an Anti-dip Rock Slope
Online Contents | 2021
|Modelling of flexural toppling failures of rock slopes
British Library Conference Proceedings | 1995
|