Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Effects of seawater on durability of hybrid C/BFRP-confined seawater–sea sand concrete columns under axial compression
A carbon-fiber-reinforced polymer (CFRP) sheet is wrapped around the basalt-fiber-reinforced polymer (BFRP) to develop a hybrid carbon/basalt-fiber-reinforced polymer (C/BFRP) so as to protect the basalt fibers in touch with chloride ions. Tensile testing is conducted on the BFRP and hybrid C/BFRP sheets. The effect of the durability of the fiber-reinforced polymer sheet on the behavior of the seawater–sea sand concrete (SSC) columns confined by the BFRP and hybrid C/BFRP sheets is examined using axial compression testing. The tensile strength retention and elongation at break retention of the hybrid C/BFRP sheet improve by 41% and 24% higher than those of the BFRP sheet after 12 months in seawater. The ultimate strength of the BFRP-confined SSC column decline by 40% more than those of the hybrid C/BFRP-confined SSC column respectively, after 12 months of seawater immersion, resulting from the reduction of lateral pressure provided by the BFRP and hybrid C/BFRP sheets in seawater. A formula for calculating the long-term ultimate strength and ultimate strain of the FRP-confined SSC column is proposed, and its predictions agree well with the test results. The hybrid C/BFRP sheet proves more efficient than the BFRP sheet in confining the seawater–sea sand concrete columns.
Effects of seawater on durability of hybrid C/BFRP-confined seawater–sea sand concrete columns under axial compression
A carbon-fiber-reinforced polymer (CFRP) sheet is wrapped around the basalt-fiber-reinforced polymer (BFRP) to develop a hybrid carbon/basalt-fiber-reinforced polymer (C/BFRP) so as to protect the basalt fibers in touch with chloride ions. Tensile testing is conducted on the BFRP and hybrid C/BFRP sheets. The effect of the durability of the fiber-reinforced polymer sheet on the behavior of the seawater–sea sand concrete (SSC) columns confined by the BFRP and hybrid C/BFRP sheets is examined using axial compression testing. The tensile strength retention and elongation at break retention of the hybrid C/BFRP sheet improve by 41% and 24% higher than those of the BFRP sheet after 12 months in seawater. The ultimate strength of the BFRP-confined SSC column decline by 40% more than those of the hybrid C/BFRP-confined SSC column respectively, after 12 months of seawater immersion, resulting from the reduction of lateral pressure provided by the BFRP and hybrid C/BFRP sheets in seawater. A formula for calculating the long-term ultimate strength and ultimate strain of the FRP-confined SSC column is proposed, and its predictions agree well with the test results. The hybrid C/BFRP sheet proves more efficient than the BFRP sheet in confining the seawater–sea sand concrete columns.
Effects of seawater on durability of hybrid C/BFRP-confined seawater–sea sand concrete columns under axial compression
Pan, Yunfeng (Autor:in) / Chang, Bing (Autor:in) / Lu, Zhongyu (Autor:in) / Su, Lizhu (Autor:in) / Zhu, Jian (Autor:in)
Advances in Structural Engineering ; 26 ; 2879-2893
01.11.2023
15 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Trans Tech Publications | 2013
|British Library Conference Proceedings | 2014
|