Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Tuned mass damper asymmetric coupling system for vibration control of adjacent twin buildings
It is widely known that, in the vibration control problem of two adjacent structures, an inter-building coupling approach with the connecting damper is more efficient than an independent control approach with the bracing damper. However, the inter-building coupling approach is only valid for two different structures. When the two structures are twin, the existing inter-building coupling approach does not work properly due to the response symmetry of the twin structures. To overcome such limitations, this study proposes a new control approach based on the asymmetric coupling system where the twin buildings are coupled with the connecting damper and the additional damper is installed asymmetrically to perturb the symmetry of the twin structures. Under this intentional asymmetric condition, the proposed system can fully maintain the control efficiency of the conventional inter-building coupling approach. The tuned mass damper–based asymmetric coupling system is considered as a numerical example, and the independent control system with tuned mass damper is further taken into account for comparison purpose. For the optimal design of the proposed system, a multi-objective optimization technique was introduced, and the efficiency of the proposed approach has been investigated through the numerical simulations of the 10-story twin structures. By comparing the control performances of the optimal solutions between the proposed asymmetric coupling systems and the independent control system, it was verified that the proposed asymmetric coupling system can be a new efficient system for the vibration control of adjacent twin structures.
Tuned mass damper asymmetric coupling system for vibration control of adjacent twin buildings
It is widely known that, in the vibration control problem of two adjacent structures, an inter-building coupling approach with the connecting damper is more efficient than an independent control approach with the bracing damper. However, the inter-building coupling approach is only valid for two different structures. When the two structures are twin, the existing inter-building coupling approach does not work properly due to the response symmetry of the twin structures. To overcome such limitations, this study proposes a new control approach based on the asymmetric coupling system where the twin buildings are coupled with the connecting damper and the additional damper is installed asymmetrically to perturb the symmetry of the twin structures. Under this intentional asymmetric condition, the proposed system can fully maintain the control efficiency of the conventional inter-building coupling approach. The tuned mass damper–based asymmetric coupling system is considered as a numerical example, and the independent control system with tuned mass damper is further taken into account for comparison purpose. For the optimal design of the proposed system, a multi-objective optimization technique was introduced, and the efficiency of the proposed approach has been investigated through the numerical simulations of the 10-story twin structures. By comparing the control performances of the optimal solutions between the proposed asymmetric coupling systems and the independent control system, it was verified that the proposed asymmetric coupling system can be a new efficient system for the vibration control of adjacent twin structures.
Tuned mass damper asymmetric coupling system for vibration control of adjacent twin buildings
Ok, Seung-Yong (Autor:in)
Advances in Structural Engineering ; 23 ; 954-968
01.04.2020
15 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch