Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Effects of indoor temperature and background noise on floor impact noise perception
This study investigates effects of room air temperature and background noise on the perception of floor impact noises in a room. Floor impact noises were recorded in apartment buildings and were presented in an indoor climate chamber with background noise for subjective evaluation. Thirty-two participants were subjected to all combinations of three thermal conditions (20%C, 25%C, 30%C and relative humidity 50%), four background noise types (Babble, Fan, Traffic and Water), three background noise levels (35 dBA, 40 dBA and 45 dBA) and four floor impact noises (Man Jumping, Children Running, Man Running and Chair Scraping). After a 1-h thermal adaptation period for each thermal condition, the participants were asked to evaluate their thermal and acoustic perceptions. Statistically significant effects were found for the room air temperature and background noise level on the perception of the floor impact noises. Noisiness, loudness and complaints of floor impact noise increased with increasing room temperature and background noise level. Annoyance of floor impact noise showed a peak in acceptable thermal environment for general comfort. Room air temperature was a dominant non-auditory factor contributing to floor impact noise annoyance, while the floor impact noise level influenced the floor impact noise loudness and the floor impact noisiness was almost equally affected by the room temperature, background noise level and floor impact noise level. Further investigation is needed to fully understand the combined perception of floor impact noise under various indoor environmental conditions.
Effects of indoor temperature and background noise on floor impact noise perception
This study investigates effects of room air temperature and background noise on the perception of floor impact noises in a room. Floor impact noises were recorded in apartment buildings and were presented in an indoor climate chamber with background noise for subjective evaluation. Thirty-two participants were subjected to all combinations of three thermal conditions (20%C, 25%C, 30%C and relative humidity 50%), four background noise types (Babble, Fan, Traffic and Water), three background noise levels (35 dBA, 40 dBA and 45 dBA) and four floor impact noises (Man Jumping, Children Running, Man Running and Chair Scraping). After a 1-h thermal adaptation period for each thermal condition, the participants were asked to evaluate their thermal and acoustic perceptions. Statistically significant effects were found for the room air temperature and background noise level on the perception of the floor impact noises. Noisiness, loudness and complaints of floor impact noise increased with increasing room temperature and background noise level. Annoyance of floor impact noise showed a peak in acceptable thermal environment for general comfort. Room air temperature was a dominant non-auditory factor contributing to floor impact noise annoyance, while the floor impact noise level influenced the floor impact noise loudness and the floor impact noisiness was almost equally affected by the room temperature, background noise level and floor impact noise level. Further investigation is needed to fully understand the combined perception of floor impact noise under various indoor environmental conditions.
Effects of indoor temperature and background noise on floor impact noise perception
Yang, Wonyoung (Autor:in) / Kim, Myung-Jun (Autor:in) / Moon, Hyeun Jun (Autor:in)
Indoor and Built Environment ; 28 ; 454-469
01.04.2019
16 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Effects of floor impact noise on psychophysiological responses
Online Contents | 2017
|Effects of floor impact noise on psychophysiological responses
Online Contents | 2017
|