Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Research on optimal sensor placement method for grid structures based on member strain energy
Structural health monitoring obtains data reflecting the service status of grid structures through sensors. One of the issues to consider in optimal sensor placement is how to obtain as much information as possible with a limited number of sensors. In this paper, a sensor placement method is proposed based on damage sensitivity and correlation analysis, which is based on strain energy calculation and is suitable for grid structures. Specifically, with the sensor locations as optimization variables, a mathematical optimization model is established by considering the damage sensitivity and redundancy of the monitoring scheme, and a genetic algorithm is employed for computation. Two examples, including a lattice shell and a flat grid, are provided to illustrate the method, followed by a discussion of the sensitivity of parameters such as stiffness reduction degree and load form. The results indicate that the redundancy of the optimized schemes for the two examples decreased by approximately 80% and 30%, respectively. The proposed method ensures a certain degree of damage sensitivity while significantly reducing redundancy, demonstrating its applicability and robustness in sensor placement for grid structures.
Research on optimal sensor placement method for grid structures based on member strain energy
Structural health monitoring obtains data reflecting the service status of grid structures through sensors. One of the issues to consider in optimal sensor placement is how to obtain as much information as possible with a limited number of sensors. In this paper, a sensor placement method is proposed based on damage sensitivity and correlation analysis, which is based on strain energy calculation and is suitable for grid structures. Specifically, with the sensor locations as optimization variables, a mathematical optimization model is established by considering the damage sensitivity and redundancy of the monitoring scheme, and a genetic algorithm is employed for computation. Two examples, including a lattice shell and a flat grid, are provided to illustrate the method, followed by a discussion of the sensitivity of parameters such as stiffness reduction degree and load form. The results indicate that the redundancy of the optimized schemes for the two examples decreased by approximately 80% and 30%, respectively. The proposed method ensures a certain degree of damage sensitivity while significantly reducing redundancy, demonstrating its applicability and robustness in sensor placement for grid structures.
Research on optimal sensor placement method for grid structures based on member strain energy
Shen, Yanbin (Autor:in) / You, Saihao (Autor:in) / Xu, Wucheng (Autor:in) / Luo, Yaozhi (Autor:in)
Advances in Structural Engineering ; 27 ; 2375-2390
01.10.2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Optimal Sensors Placement Based on Modal Strain Energy
Tema Archiv | 2012
|Optimal Sensors Placement Based on Modal Strain Energy
British Library Conference Proceedings | 2012
|Bayesian optimal sensor placement for crack identification in structures using strain measurements
Wiley | 2018
|Optimal Sensor Placement for Structures Under Parametric Uncertainty
Springer Verlag | 2013
|Optimal Sensor Placement for Structures Under Parametric Uncertainty
British Library Conference Proceedings | 2013
|