Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Displacement-based determination of BRBs in retrofitting an RC frame building
An RC frame school building was designed with lower fortification requirements than required. It collapsed in the 2008 Ms8.0 Wenchuan earthquake. This study evaluated the building’s deficiency and practiced a retrofit design based on traditional demand-capacity method but with a displacement-based (DB) procedure, in which target capacities were obtained from the equivalent single-degree-of-freedom (ESDOF) systems defined by target mode shapes of the MDOF system, and shear demands were assessed using an R-μ-T relationship to match different capacity levels. To make the DB procedure code-conforming, the retrofitting elements (BRBs) were simplified as bi-linear elements, with the two-phase parameters corresponding to the code’s two-stage requirements. Shear distribution to the MDOF building was also determined by displacement shapes. BRBs’ stiffness demands and sizes were from the difference of the required and available shear resistances. The effectiveness of the method was validated by time history analyses. Different earthquake level simulations showed that, the method realized the design goals but did not lead to over-retrofitting; the BRBs took most of the shear demand but would not induce other unexpected failures. So the method was suitable for retrofitting similar structures.
Displacement-based determination of BRBs in retrofitting an RC frame building
An RC frame school building was designed with lower fortification requirements than required. It collapsed in the 2008 Ms8.0 Wenchuan earthquake. This study evaluated the building’s deficiency and practiced a retrofit design based on traditional demand-capacity method but with a displacement-based (DB) procedure, in which target capacities were obtained from the equivalent single-degree-of-freedom (ESDOF) systems defined by target mode shapes of the MDOF system, and shear demands were assessed using an R-μ-T relationship to match different capacity levels. To make the DB procedure code-conforming, the retrofitting elements (BRBs) were simplified as bi-linear elements, with the two-phase parameters corresponding to the code’s two-stage requirements. Shear distribution to the MDOF building was also determined by displacement shapes. BRBs’ stiffness demands and sizes were from the difference of the required and available shear resistances. The effectiveness of the method was validated by time history analyses. Different earthquake level simulations showed that, the method realized the design goals but did not lead to over-retrofitting; the BRBs took most of the shear demand but would not induce other unexpected failures. So the method was suitable for retrofitting similar structures.
Displacement-based determination of BRBs in retrofitting an RC frame building
Wang, Yumei (Autor:in)
Advances in Structural Engineering ; 24 ; 1755-1766
01.06.2021
12 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
BASE | 2019
|Research on Application of BRBs in Steel Frame Structures
British Library Conference Proceedings | 2011
|Seismic Performance Evaluation of Masonry Infilled RC Frame Retrofitted with BRBs
BASE | 2023
|BASE | 2020
|