Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Investigating the Statical Stability of Pin-jointed Structures Using Genetic Algorithm
In this paper, the method of genetic algorithm is used as a search technique to find the stability characteristics of simultaneously statically and kinematically indeterminate structures The genetic algorithm is used to find out if there is a solution for a specific quadratic form which has to be satisfied in order to guarantee the statical stability. The genetic algorithm is a search technique that imitates nature in selecting and optimising towards an aim. The use of the genetic algorithm in the search for the stability of pin-jointed structures is found to be simple and powerful. A computer program called STAPS (Stability of Pin-jointed Structures) has been developed using the genetic algorithm. This program firstly identifies the independent mechanisms and states of self-stress, if any, in a structure. Then, the program searches for any state of self-stress that can stabilise all the mechanisms of the structure. STAPS program is a powerful tool for finding the stability of 2D and 3D pin-jointed structures. The program can be used for investigating the stability of space trusses and cable structures like cable nets, cable-strut and tensegrity structures1,2. Section 1 of this paper contains a brief introduction. Section 2 discusses the background of what is called ‘product forces’. Also, in Section 3 the stabilisation of mechanisms of pin-jointed structures is discussed. Section 4 introduces the method of genetic algorithm and how it is used in the search for stability of pin-jointed structures. Section 5 introduces the STAPS program together with illustrative examples of its application. Finally, Section 6 gives a conclusion of the work presented in this paper.
Investigating the Statical Stability of Pin-jointed Structures Using Genetic Algorithm
In this paper, the method of genetic algorithm is used as a search technique to find the stability characteristics of simultaneously statically and kinematically indeterminate structures The genetic algorithm is used to find out if there is a solution for a specific quadratic form which has to be satisfied in order to guarantee the statical stability. The genetic algorithm is a search technique that imitates nature in selecting and optimising towards an aim. The use of the genetic algorithm in the search for the stability of pin-jointed structures is found to be simple and powerful. A computer program called STAPS (Stability of Pin-jointed Structures) has been developed using the genetic algorithm. This program firstly identifies the independent mechanisms and states of self-stress, if any, in a structure. Then, the program searches for any state of self-stress that can stabilise all the mechanisms of the structure. STAPS program is a powerful tool for finding the stability of 2D and 3D pin-jointed structures. The program can be used for investigating the stability of space trusses and cable structures like cable nets, cable-strut and tensegrity structures1,2. Section 1 of this paper contains a brief introduction. Section 2 discusses the background of what is called ‘product forces’. Also, in Section 3 the stabilisation of mechanisms of pin-jointed structures is discussed. Section 4 introduces the method of genetic algorithm and how it is used in the search for stability of pin-jointed structures. Section 5 introduces the STAPS program together with illustrative examples of its application. Finally, Section 6 gives a conclusion of the work presented in this paper.
Investigating the Statical Stability of Pin-jointed Structures Using Genetic Algorithm
El-Lishani, Sana (Autor:in) / Nooshin, H. (Autor:in) / Disney, P. (Autor:in)
International Journal of Space Structures ; 20 ; 53-68
01.03.2005
16 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Investigating the Statical Stability of Pin-jointed Structures Using Genetic Algorithm
Online Contents | 2005
|Statical indeterminacy and stability of structures, F
Engineering Index Backfile | 1963
|Statical computations for chimneys
Engineering Index Backfile | 1905
|Statical computations for chimneys
Engineering Index Backfile | 1905
|Engineering Index Backfile | 1911
|