Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Systematic infrared image quality improvement using deep learning based techniques
Infrared thermography (IRT, or thermal video) uses thermographic cameras to detect and record radiation in the longwavelength infrared range of the electromagnetic spectrum. It allows sensing environments beyond the visual perception limitations, and thus has been widely used in many civilian and military applications. Even though current thermal cameras are able to provide high resolution and bit-depth images, there are significant challenges to be addressed in specific applications such as poor contrast, low target signature resolution, etc. This paper addresses quality improvement in IRT images for object recognition. A systematic approach based on image bias correction and deep learning is proposed to increase target signature resolution and optimise the baseline quality of inputs for object recognition. Our main objective is to maximise the useful information on the object to be detected even when the number of pixels on target is adversely small. The experimental results show that our approach can significantly improve target resolution and thus helps making object recognition more efficient in automatic target detection/recognition systems (ATD/R).
Systematic infrared image quality improvement using deep learning based techniques
Infrared thermography (IRT, or thermal video) uses thermographic cameras to detect and record radiation in the longwavelength infrared range of the electromagnetic spectrum. It allows sensing environments beyond the visual perception limitations, and thus has been widely used in many civilian and military applications. Even though current thermal cameras are able to provide high resolution and bit-depth images, there are significant challenges to be addressed in specific applications such as poor contrast, low target signature resolution, etc. This paper addresses quality improvement in IRT images for object recognition. A systematic approach based on image bias correction and deep learning is proposed to increase target signature resolution and optimise the baseline quality of inputs for object recognition. Our main objective is to maximise the useful information on the object to be detected even when the number of pixels on target is adversely small. The experimental results show that our approach can significantly improve target resolution and thus helps making object recognition more efficient in automatic target detection/recognition systems (ATD/R).
Systematic infrared image quality improvement using deep learning based techniques
Zhang, Huaizhong (Autor:in) / Casaseca-de-la-Higuera, Pablo (Autor:in) / Luo, Chunbo (Autor:in) / Wang, Qi (Autor:in) / Kitchin, Matthew (Autor:in) / Parmley, Andrew (Autor:in) / Monge-Alvarez, Jesus (Autor:in)
Remote Sensing Technologies and Applications in Urban Environments ; 2016 ; Edinburgh,United Kingdom
Proc. SPIE ; 10008
26.10.2016
Aufsatz (Konferenz)
Elektronische Ressource
Englisch
A Systematic Review on Acute Leukemia Detection Using Deep Learning Techniques
Online Contents | 2022
|A Systematic Review on Breast Cancer Detection Using Deep Learning Techniques
Online Contents | 2022
|A Systematic Review on Diabetic Retinopathy Detection Using Deep Learning Techniques
Springer Verlag | 2023
|Recent trends in crowd management using deep learning techniques: a systematic literature review
Springer Verlag | 2024
|