Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Acid-assisted subcritical blunt-tip crack propagation in carbonate rocks
AbstractSubcritical crack propagation in stressed carbonate rocks in a chemically reactive environment is a fundamental mechanism underlying many geomechanical processes frequently encountered in the engineering of geo-energy, including unconventional shale gas, geothermal energy, carbon sequestration and utilization. How a macroscopic Mode I crack propagates driven by a reactive fluid pressurizing on the crack surfaces with acidic agents diffusing into the rock matrix remains an open question. Here, the carbonate rock is modeled as an elasto-viscoplastic material with the mineral mass removal process affecting the rock properties in both elastic and plastic domains. A blunt-tip crack is considered to avoid any geometrically induced singularity problem and to allow a numerical analysis on the evolution of the chemical field being linked to the micro-cracking activities in front of the crack tip, affecting the delivery of acid. The model is capable of reproducing an archetypal three-region behavior of subcritical crack growth in a reactive environment. The crack propagation exhibits a prominent acceleration in Region III due to a two-way mutually enhancing feedback between mineral dissolution and the degradation process, which is most pronounced in front of the crack tip. With the consideration of initial imperfections in the rock, the macroscopic crack propagation is further accelerated with a secondary acceleration arising due to self-organization of micro-bands inside the chemically enabled plasticity zone.
Acid-assisted subcritical blunt-tip crack propagation in carbonate rocks
AbstractSubcritical crack propagation in stressed carbonate rocks in a chemically reactive environment is a fundamental mechanism underlying many geomechanical processes frequently encountered in the engineering of geo-energy, including unconventional shale gas, geothermal energy, carbon sequestration and utilization. How a macroscopic Mode I crack propagates driven by a reactive fluid pressurizing on the crack surfaces with acidic agents diffusing into the rock matrix remains an open question. Here, the carbonate rock is modeled as an elasto-viscoplastic material with the mineral mass removal process affecting the rock properties in both elastic and plastic domains. A blunt-tip crack is considered to avoid any geometrically induced singularity problem and to allow a numerical analysis on the evolution of the chemical field being linked to the micro-cracking activities in front of the crack tip, affecting the delivery of acid. The model is capable of reproducing an archetypal three-region behavior of subcritical crack growth in a reactive environment. The crack propagation exhibits a prominent acceleration in Region III due to a two-way mutually enhancing feedback between mineral dissolution and the degradation process, which is most pronounced in front of the crack tip. With the consideration of initial imperfections in the rock, the macroscopic crack propagation is further accelerated with a secondary acceleration arising due to self-organization of micro-bands inside the chemically enabled plasticity zone.
Acid-assisted subcritical blunt-tip crack propagation in carbonate rocks
Acta Geotech.
Tang, XiaoJie (Autor:in) / Hu, ManMan (Autor:in)
Acta Geotechnica ; 19 ; 3095-3113
01.05.2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Acid-assisted subcritical blunt-tip crack propagation in carbonate rocks
Springer Verlag | 2024
|British Library Online Contents | 2014
|Dependence of subcritical crack growth in rocks on water vapor pressure
British Library Conference Proceedings | 2004
|Subcritical crack propagation under cyclic load of concrete structures
Online Contents | 2010
|Springer Verlag | 1999
|