Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
A fast non-monotone line search for stochastic gradient descent
We give an improved non-monotone line search algorithm for stochastic gradient descent (SGD) for functions that satisfy interpolation conditions. We establish theoretical convergence guarantees for the algorithm for non-convex functions. We conduct a detailed empirical evaluation to validate the theoretical results.
A fast non-monotone line search for stochastic gradient descent
We give an improved non-monotone line search algorithm for stochastic gradient descent (SGD) for functions that satisfy interpolation conditions. We establish theoretical convergence guarantees for the algorithm for non-convex functions. We conduct a detailed empirical evaluation to validate the theoretical results.
A fast non-monotone line search for stochastic gradient descent
Optim Eng
Fathi Hafshejani, Sajad (Autor:in) / Gaur, Daya (Autor:in) / Hossain, Shahadat (Autor:in) / Benkoczi, Robert (Autor:in)
Optimization and Engineering ; 25 ; 1105-1124
01.06.2024
20 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
A fast non-monotone line search for stochastic gradient descent
Springer Verlag | 2024
|Digital Image Correlation Using Stochastic Parallel-Gradient-Descent Algorithm
British Library Online Contents | 2013
|A linearly convergent descent method for strongly monotone variational inequality problems
British Library Online Contents | 2003
|On Early Stopping in Gradient Descent Learning
British Library Online Contents | 2007
|