Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Concentrating solar power in a sustainable future electricity mix
Abstract The capacity of a concentrating solar thermal power (CSP) plant can be considered flexible and firm, just like that of a conventional steam cycle power station. Periods without sunshine can be bridged by thermal energy storage or fuel, enabling a CSP plant to deliver power on demand at any time. To this technical quality is added the economic quality of electricity costs that will be stable for a lifetime because they are mainly composed of capital costs, spare parts and personnel. CSP is competitive with power from fuel oil and moving to break even in costs with natural gas by around 2020 and steam coal by around 2025. Carbon dioxide emissions of 10–40 tons/GWh, land use of 250–550 m²/GWh and water consumption of 250 m³/GWh (using dry cooling) compare favorably with other energy sources. Environmental benefits, the technical imperative of firm and at the same time flexible power supply, and the economic targets of affordability and cost stability are the main reasons for a significant role for CSP in a sustainable future electricity mix. Two case studies show the different roles CSP can play north and south of the Mediterranean Sea, in one case importing CSP to Germany for flexible power and in the second case using CSP in Jordan to provide firm and at the same time renewable power capacity for the quickly growing electricity demand.
Concentrating solar power in a sustainable future electricity mix
Abstract The capacity of a concentrating solar thermal power (CSP) plant can be considered flexible and firm, just like that of a conventional steam cycle power station. Periods without sunshine can be bridged by thermal energy storage or fuel, enabling a CSP plant to deliver power on demand at any time. To this technical quality is added the economic quality of electricity costs that will be stable for a lifetime because they are mainly composed of capital costs, spare parts and personnel. CSP is competitive with power from fuel oil and moving to break even in costs with natural gas by around 2020 and steam coal by around 2025. Carbon dioxide emissions of 10–40 tons/GWh, land use of 250–550 m²/GWh and water consumption of 250 m³/GWh (using dry cooling) compare favorably with other energy sources. Environmental benefits, the technical imperative of firm and at the same time flexible power supply, and the economic targets of affordability and cost stability are the main reasons for a significant role for CSP in a sustainable future electricity mix. Two case studies show the different roles CSP can play north and south of the Mediterranean Sea, in one case importing CSP to Germany for flexible power and in the second case using CSP in Jordan to provide firm and at the same time renewable power capacity for the quickly growing electricity demand.
Concentrating solar power in a sustainable future electricity mix
Trieb, Franz (Autor:in) / Fichter, Tobias (Autor:in) / Moser, Massimo (Autor:in)
Sustainability Science ; 9 ; 47-60
26.09.2013
14 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Concentrating Solar Power: The State of the Art, Research Gaps and Future Perspectives
BASE | 2023
|BASE | 2015
|BASE | 2015
|Solar Selective Coatings for Concentrating Solar Power Central Receivers
British Library Online Contents | 2012
|