Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Application of the HEC-RAS Model for the Floodplain Delineation in a Flat Semi-Arid River Basin
Floods in a semi-arid region with flat terrain have been examined in this study. The Rel River is a river that runs through Dhanera town and vanishes in the little desert of Kutch (which is almost flat). There was a lot of rain in July of 2017, and huge damages were noted in the Dhanera town and surrounding areas. The floodwater covers many square kilometres in the Rel River Basin. The current study has been used two-dimensional (2D) hydraulic modelling to simulate the flood of 2017. For this event, the Hydraulic Engineering Centre-River Analysis System (HEC-RAS) model has been utilised to simulate 2D overland flow. The Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM), which has been acquired from the earth explorer, has been utilised for this study. Upstream boundary conditions are based on flow hydrograph of Dhanera highway bridge gauge station, whereas downstream boundary condition is based on normal depth. The HEC-RAS model has been calibrated and validated using field survey data collection. During the flood in the year 2017, the Dhanera town was 75–77% submerged. Due to the villagers' encroachment on the floodplains to conduct farming, the observed flood depths in rural areas were high. Streams and nullahs in urban areas had been blocked, resulting in greater flood depth and a longer flood recession time. To deal with severe flooding scenarios, it is believed that significant mitigating measures are necessary. The findings of this 2D hydraulic model may be used to recommend flood mitigation techniques.
Application of the HEC-RAS Model for the Floodplain Delineation in a Flat Semi-Arid River Basin
Floods in a semi-arid region with flat terrain have been examined in this study. The Rel River is a river that runs through Dhanera town and vanishes in the little desert of Kutch (which is almost flat). There was a lot of rain in July of 2017, and huge damages were noted in the Dhanera town and surrounding areas. The floodwater covers many square kilometres in the Rel River Basin. The current study has been used two-dimensional (2D) hydraulic modelling to simulate the flood of 2017. For this event, the Hydraulic Engineering Centre-River Analysis System (HEC-RAS) model has been utilised to simulate 2D overland flow. The Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM), which has been acquired from the earth explorer, has been utilised for this study. Upstream boundary conditions are based on flow hydrograph of Dhanera highway bridge gauge station, whereas downstream boundary condition is based on normal depth. The HEC-RAS model has been calibrated and validated using field survey data collection. During the flood in the year 2017, the Dhanera town was 75–77% submerged. Due to the villagers' encroachment on the floodplains to conduct farming, the observed flood depths in rural areas were high. Streams and nullahs in urban areas had been blocked, resulting in greater flood depth and a longer flood recession time. To deal with severe flooding scenarios, it is believed that significant mitigating measures are necessary. The findings of this 2D hydraulic model may be used to recommend flood mitigation techniques.
Application of the HEC-RAS Model for the Floodplain Delineation in a Flat Semi-Arid River Basin
Lecture Notes in Civil Engineering
Timbadiya, P. V. (Herausgeber:in) / Patel, P. L. (Herausgeber:in) / Singh, Vijay P. (Herausgeber:in) / Sharma, Priyank J. (Herausgeber:in) / Shaikh, Mohamedmaroof P. (Autor:in) / Yadav, Sanjaykumar M. (Autor:in) / Manekar, Vivek L. (Autor:in)
International Conference on Hydraulics, Water Resources and Coastal Engineering ; 2021
01.05.2023
10 pages
Aufsatz/Kapitel (Buch)
Elektronische Ressource
Englisch
British Library Conference Proceedings | 2007
|A GIS-based approach to river network floodplain delineation
British Library Conference Proceedings | 2005
|Applying the HEC-RAS model and GIS techniques in river network floodplain delineation
British Library Online Contents | 2006
|