Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Experimental Study on Mechanical Properties of the Damaged Hoop Head Mortise-Tenon Joint
Damage is a common condition in ancient timber structures, whose influence on the mechanical properties of structures cannot be ignored. To study the mechanical properties of damaged hoop head mortise-tenon joint, four specimens with shrinkage gauge, including one intact joint specimen and three artificial simulated damaged joint specimens, are designed, and fabricated in this paper by regarding the global damage degree and column axial force as the variation of parameters. The failure mode, hysteresis curve, skeleton curve, ductility, and energy dissipation capacity of the specimens are studied by low-cyclic reversed loading tests. The results show that the failure pattern is randomly manifested as parallel-to-grain tensile cracking failure or vertical splitting failure of the beam tenon. When the global damage degree increases, the two types of damage are more likely to appear simultaneously. The global damage degree has a significant influence on the ultimate bending moment and energy dissipation capacity of hoop head mortise-tenon joints, and 2.4% of the global damage degree can lead to a significant decrease in both. The column axial force can affect the ultimate bending moment, ductility, and energy dissipation capacity of hoop head mortise-tenon joints. When the column axial force increases, the ultimate bending moment and energy dissipation capacity will increase, while the ductility will decrease.
Experimental Study on Mechanical Properties of the Damaged Hoop Head Mortise-Tenon Joint
Damage is a common condition in ancient timber structures, whose influence on the mechanical properties of structures cannot be ignored. To study the mechanical properties of damaged hoop head mortise-tenon joint, four specimens with shrinkage gauge, including one intact joint specimen and three artificial simulated damaged joint specimens, are designed, and fabricated in this paper by regarding the global damage degree and column axial force as the variation of parameters. The failure mode, hysteresis curve, skeleton curve, ductility, and energy dissipation capacity of the specimens are studied by low-cyclic reversed loading tests. The results show that the failure pattern is randomly manifested as parallel-to-grain tensile cracking failure or vertical splitting failure of the beam tenon. When the global damage degree increases, the two types of damage are more likely to appear simultaneously. The global damage degree has a significant influence on the ultimate bending moment and energy dissipation capacity of hoop head mortise-tenon joints, and 2.4% of the global damage degree can lead to a significant decrease in both. The column axial force can affect the ultimate bending moment, ductility, and energy dissipation capacity of hoop head mortise-tenon joints. When the column axial force increases, the ultimate bending moment and energy dissipation capacity will increase, while the ductility will decrease.
Experimental Study on Mechanical Properties of the Damaged Hoop Head Mortise-Tenon Joint
Lecture Notes in Civil Engineering
Yang, Yang (Herausgeber:in) / Peng, Chengwei (Autor:in) / Lv, Wenlong (Autor:in)
14.02.2023
11 pages
Aufsatz/Kapitel (Buch)
Elektronische Ressource
Englisch