Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Intumescent Nanocoatings for Fire Safety
This chapter presents the results of modification of flame-retardant intumescent compositions with additives in order to increase their operational characteristics. Carbon nanostructures and their precursors: monolayer and multilayer nanotubes, fullerenes and their endohedral metal complexes, graphenes, including thermally expanded graphite, and tetraazate tetrabenzoporphyrin complexes were considered as modifying additives that increase the operational characteristics of flame-retardant charring compositions. The results of instrumental studies of the physicochemical behavior of intumescent compositions upon thermolysis in the presence of modifying additives are presented. For the laboratory study of fire-retardant effectiveness of coatings based on modified intumescent compositions, a device was designed to set the temperature regime of a cellulose fire, with the function of controlling the temperature in a furnace and on unheated surface of a sample. The char microstructure was studied by scanning electron microscopy in the secondary electron mode. The surface structure of char was determined using an atomic force microscope. The behavior of the modified intumescent compositions during thermolysis was studied using differential thermal analysis, as well as by oxidative microcalorimetry, according to ASTM D7309 (method A) (“standard test method for determining the flammability characteristics of plastics and other solid materials using oxidative microcalorimetry”). Field fire tests were carried out in specialized accredited laboratories in accordance with the requirements of national standards. The catalytic effect of carbon nanostructures of various morphologies and their precursors on the synthesis of polymer basis of char is established and theoretically justified, leading to a change in its microstructure and, as a result, to a significant increase in the fire-retardant efficiency of intumescent coatings. Methods of directional regulation of structure and properties of polymer-based intumescent char-forming materials are considered with the aim of increasing their fire-retardant efficiency, taking into account the application technology and operating conditions.
Intumescent Nanocoatings for Fire Safety
This chapter presents the results of modification of flame-retardant intumescent compositions with additives in order to increase their operational characteristics. Carbon nanostructures and their precursors: monolayer and multilayer nanotubes, fullerenes and their endohedral metal complexes, graphenes, including thermally expanded graphite, and tetraazate tetrabenzoporphyrin complexes were considered as modifying additives that increase the operational characteristics of flame-retardant charring compositions. The results of instrumental studies of the physicochemical behavior of intumescent compositions upon thermolysis in the presence of modifying additives are presented. For the laboratory study of fire-retardant effectiveness of coatings based on modified intumescent compositions, a device was designed to set the temperature regime of a cellulose fire, with the function of controlling the temperature in a furnace and on unheated surface of a sample. The char microstructure was studied by scanning electron microscopy in the secondary electron mode. The surface structure of char was determined using an atomic force microscope. The behavior of the modified intumescent compositions during thermolysis was studied using differential thermal analysis, as well as by oxidative microcalorimetry, according to ASTM D7309 (method A) (“standard test method for determining the flammability characteristics of plastics and other solid materials using oxidative microcalorimetry”). Field fire tests were carried out in specialized accredited laboratories in accordance with the requirements of national standards. The catalytic effect of carbon nanostructures of various morphologies and their precursors on the synthesis of polymer basis of char is established and theoretically justified, leading to a change in its microstructure and, as a result, to a significant increase in the fire-retardant efficiency of intumescent coatings. Methods of directional regulation of structure and properties of polymer-based intumescent char-forming materials are considered with the aim of increasing their fire-retardant efficiency, taking into account the application technology and operating conditions.
Intumescent Nanocoatings for Fire Safety
Springer Series on Polymer and Composite Materials
Zybina, Olga (Autor:in) / Gravit, Marina (Autor:in)
Intumescent Coatings for Fire Protection of Building Structures and Materials ; Kapitel: 4 ; 117-141
05.11.2020
25 pages
Aufsatz/Kapitel (Buch)
Elektronische Ressource
Englisch
Flame retardant , Intumescent coating , Nanotubes , Carbon nanotubes , Graphene , Fullerene , Intercalated graphite , Oxidized graphite , Thermal analysis , Microcalorimetry , Fire test , Char , Intumescent char , Intumescent layer Chemistry , Polymer Sciences , Fire Science, Hazard Control, Building Safety , Building Materials , Surfaces and Interfaces, Thin Films , Chemistry and Materials Science
British Library Online Contents | 1994
|Intumescent passive fire protection systems
British Library Conference Proceedings | 2001
|