Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
A Critical Review of Bacterial-Based Taxonomy for Self-healing Concrete
Concrete is now widely employed in the construction sector throughout the world because of its availability and affordability; however, it is prone to cracking. Due to water and chloride intrusion caused by cracking, which corrodes reinforced concrete's rebars, concrete's durability decreases. Additionally, it takes a lot of time and money to regularly evaluate and maintain concrete structures. Hence, A Critical Review of a Bacterial-Based Taxonomy for Self-Healing is most needed in the construction industry. Cracks can arise as a result of loading, volumetric change, extreme heat, creep, plastic resolution, contraction, or parameters of the system such as alkali-silicate response, freezing, and thawing cycles. Typically, slight cracks do not result in a building collapsing or impair its lifespan or sustainability. According to the study, a microbial self-healing technique is unique in that it has the ability to repair cracks quickly, effectively, and sustainably while also being ecologically friendly. In this section, a taxonomy of self-healing methods, including natural, autonomous (automatic and biological), and triggered healing processes, was constructed. The self-healing process is cost-effective for the building structure, but it relies on sustainable conditions like water and is less effective at fixing wider cracks. The biological approach was found to be promising because of the homogeneous properties of bacteria in the alkaline concrete environment.
A Critical Review of Bacterial-Based Taxonomy for Self-healing Concrete
Concrete is now widely employed in the construction sector throughout the world because of its availability and affordability; however, it is prone to cracking. Due to water and chloride intrusion caused by cracking, which corrodes reinforced concrete's rebars, concrete's durability decreases. Additionally, it takes a lot of time and money to regularly evaluate and maintain concrete structures. Hence, A Critical Review of a Bacterial-Based Taxonomy for Self-Healing is most needed in the construction industry. Cracks can arise as a result of loading, volumetric change, extreme heat, creep, plastic resolution, contraction, or parameters of the system such as alkali-silicate response, freezing, and thawing cycles. Typically, slight cracks do not result in a building collapsing or impair its lifespan or sustainability. According to the study, a microbial self-healing technique is unique in that it has the ability to repair cracks quickly, effectively, and sustainably while also being ecologically friendly. In this section, a taxonomy of self-healing methods, including natural, autonomous (automatic and biological), and triggered healing processes, was constructed. The self-healing process is cost-effective for the building structure, but it relies on sustainable conditions like water and is less effective at fixing wider cracks. The biological approach was found to be promising because of the homogeneous properties of bacteria in the alkaline concrete environment.
A Critical Review of Bacterial-Based Taxonomy for Self-healing Concrete
Lecture Notes in Civil Engineering
Sreekeshava, K. S. (Herausgeber:in) / Kolathayar, Sreevalsa (Herausgeber:in) / Vinod Chandra Menon, N. (Herausgeber:in) / Nageswari, N. (Autor:in) / Divahar, R. (Autor:in) / Sangeetha, S. P. (Autor:in)
International Conference on Interdisciplinary Approaches in Civil Engineering for Sustainable Development ; 2023
28.03.2024
11 pages
Aufsatz/Kapitel (Buch)
Elektronische Ressource
Englisch
A Review of Self-healing Bacterial Concrete
Springer Verlag | 2018
|SELF-HEALING CONCRETE: A CRITICAL REVIEW
TIBKAT | 2020
|Concrete with Encapsulated Self-healing Agent: A Critical Review
Springer Verlag | 2020
|Self-Healing of Concrete Using Bacterial Solution
Springer Verlag | 2021
|