Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Performance study of alkali-activated phosphate slag-granulated blast furnace slag composites: effect of the granulated blast furnace slag content
Alkali-activated materials (AAMs) are a kind of hardened slurry produced by an alkali activation reaction between a silicate precursor and an alkali activator that is treated as an environmentally friendly cementitious material that can be used in place of ordinary Portland cement (OPC). However, some studies point out that the AAMs with a single precursor had some defects. To realize the high value-added utilization of phosphorus slag (PS), this paper mixed PS with granulated blast furnace slag (GBFS) to prepare alkali-activated composite cementitious materials. The workability, mechanical properties, and hydration of alkali-activated phosphorus slag—granulated blast furnace slag (AAPG) were characterized using fluidity, setting time, compressive strength, flexural strength, hydration heat, XRD, FTIR, TG-DSC, and SEM + EDS. The results show that GBFS can improve the fluidity of AAPG, but the slurry will flash set after exceeding 20% GBFS content. GBFS can rapidly hydrate to generate C-S–H to improve its early strength, but the later stage results in larger pores due to the uneven distribution of matrix products. The hydration generation products of AAPG are C-S–H and C-(N)-A-S–H dominated by the Q2 unit, with some hydrotalcite by-products generated.
Performance study of alkali-activated phosphate slag-granulated blast furnace slag composites: effect of the granulated blast furnace slag content
Alkali-activated materials (AAMs) are a kind of hardened slurry produced by an alkali activation reaction between a silicate precursor and an alkali activator that is treated as an environmentally friendly cementitious material that can be used in place of ordinary Portland cement (OPC). However, some studies point out that the AAMs with a single precursor had some defects. To realize the high value-added utilization of phosphorus slag (PS), this paper mixed PS with granulated blast furnace slag (GBFS) to prepare alkali-activated composite cementitious materials. The workability, mechanical properties, and hydration of alkali-activated phosphorus slag—granulated blast furnace slag (AAPG) were characterized using fluidity, setting time, compressive strength, flexural strength, hydration heat, XRD, FTIR, TG-DSC, and SEM + EDS. The results show that GBFS can improve the fluidity of AAPG, but the slurry will flash set after exceeding 20% GBFS content. GBFS can rapidly hydrate to generate C-S–H to improve its early strength, but the later stage results in larger pores due to the uneven distribution of matrix products. The hydration generation products of AAPG are C-S–H and C-(N)-A-S–H dominated by the Q2 unit, with some hydrotalcite by-products generated.
Performance study of alkali-activated phosphate slag-granulated blast furnace slag composites: effect of the granulated blast furnace slag content
Archiv.Civ.Mech.Eng
Zhang, Yannian (Autor:in) / Yang, Daokui (Autor:in) / Wang, Qingjie (Autor:in)
27.06.2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Ground Granulated Blast-Furnace Slag
Springer Verlag | 2017
|Alkali Activation of Granulated Blast Furnace Slag
Trans Tech Publications | 2010
|Hydration of alkali-activated ground granulated blast furnace slag
British Library Online Contents | 2000
|Hydration of alkali-activated ground granulated blast furnace slag
Tema Archiv | 2000
|