Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Engagement Control of Automotive Clutch by Mechatronic System Using Pre-determined Force Trajectories
Abstract In automated manual clutch (AMC), the mechatronic system is required to generate appropriate clutch force trajectory to achieve good engagement quality. For this purpose, four generic force trajectories were analyzed and engagement quality was assessed, using four parameters—peak engine speed, clutch lockup time, vehicle lurch, and shuffle. Magnitudes of these parameters were obtained from results of simulation on a complete dynamic model of vehicle driveline. It was observed that parabolic trajectory gives satisfactory overall performance in terms of engagement quality, but results into higher lurch. However, it can be modified further to reduce lurch. A set of such trajectories may be obtained for different driving conditions, for use in mechatronic system, for control of AMC. This approach is an alternative to costlier and more difficult method of real-time control of force trajectory during clutch engagement. Schematic implementation of proposed mechatronic system, with driver interface, is also outlined in this work.
Engagement Control of Automotive Clutch by Mechatronic System Using Pre-determined Force Trajectories
Abstract In automated manual clutch (AMC), the mechatronic system is required to generate appropriate clutch force trajectory to achieve good engagement quality. For this purpose, four generic force trajectories were analyzed and engagement quality was assessed, using four parameters—peak engine speed, clutch lockup time, vehicle lurch, and shuffle. Magnitudes of these parameters were obtained from results of simulation on a complete dynamic model of vehicle driveline. It was observed that parabolic trajectory gives satisfactory overall performance in terms of engagement quality, but results into higher lurch. However, it can be modified further to reduce lurch. A set of such trajectories may be obtained for different driving conditions, for use in mechatronic system, for control of AMC. This approach is an alternative to costlier and more difficult method of real-time control of force trajectory during clutch engagement. Schematic implementation of proposed mechatronic system, with driver interface, is also outlined in this work.
Engagement Control of Automotive Clutch by Mechatronic System Using Pre-determined Force Trajectories
Tripathi, K. (Autor:in)
Journal of The Institution of Engineers (India): Series C ; 95 ; 109-117
01.04.2014
9 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch