Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Assessment of Effect of Deep Excavation on Adjacent Structures Using Finite Element Analysis
Deep excavations and its impact on neighboring buildings is one of the most important issues when planning to construct new facility. In metropolitan city, it’s a challenging task for the execution of underground construction due to limited space and high cost of land. Hence, this implies that deep excavation has become necessary for the proper utilization of available space. Therefore, it’s important to make sure that adjacent structures are safe against deep excavation-induced deformation. In this study, a two-dimensional Finite Element Method in PLAXIS 2D has been chosen for the soil–structure analysis of deep excavation supported by contiguous pile wall located in Addis Ababa. For the numerical analysis two constitutive models Mohr–Coulomb and Hardening Soil have been applied in drained effective stress condition. The objective of this study is to investigate the effect of deep excavation on adjacent structures by considering support stiffness, ground water condition, neighboring building distance from face of excavation, and building load. The analysis of this study monitors parameters like maximum lateral wall deflection (δhm), maximum settlement (δvm), angular distortion of the neighboring structures, horizontal strain, and maximum bending moment of contiguous pile wall. Moreover, normalization of lateral wall deflection (δhm/He) and settlement (δvm/He) to the excavation depth (He) and neighboring building distance-excavation (D/He) has been presented. Parametric studies have been carried out by varying parameters of diameter of contiguous pile wall, horizontal anchor spacing, and pre-stress force of anchor. The analysis result has been recorded in terms of lateral wall deflection, ground settlement, and bending moment.
Assessment of Effect of Deep Excavation on Adjacent Structures Using Finite Element Analysis
Deep excavations and its impact on neighboring buildings is one of the most important issues when planning to construct new facility. In metropolitan city, it’s a challenging task for the execution of underground construction due to limited space and high cost of land. Hence, this implies that deep excavation has become necessary for the proper utilization of available space. Therefore, it’s important to make sure that adjacent structures are safe against deep excavation-induced deformation. In this study, a two-dimensional Finite Element Method in PLAXIS 2D has been chosen for the soil–structure analysis of deep excavation supported by contiguous pile wall located in Addis Ababa. For the numerical analysis two constitutive models Mohr–Coulomb and Hardening Soil have been applied in drained effective stress condition. The objective of this study is to investigate the effect of deep excavation on adjacent structures by considering support stiffness, ground water condition, neighboring building distance from face of excavation, and building load. The analysis of this study monitors parameters like maximum lateral wall deflection (δhm), maximum settlement (δvm), angular distortion of the neighboring structures, horizontal strain, and maximum bending moment of contiguous pile wall. Moreover, normalization of lateral wall deflection (δhm/He) and settlement (δvm/He) to the excavation depth (He) and neighboring building distance-excavation (D/He) has been presented. Parametric studies have been carried out by varying parameters of diameter of contiguous pile wall, horizontal anchor spacing, and pre-stress force of anchor. The analysis result has been recorded in terms of lateral wall deflection, ground settlement, and bending moment.
Assessment of Effect of Deep Excavation on Adjacent Structures Using Finite Element Analysis
Lecture Notes in Civil Engineering
Satyanarayana Reddy, C. N. V. (Herausgeber:in) / Muthukkumaran, K. (Herausgeber:in) / Vaidya, Ravikiran (Herausgeber:in) / Hulagabali, Anand M. (Autor:in) / Bariker, Pankaj (Autor:in) / Solanki, C. H. (Autor:in) / Dodagoudar, G. R. (Autor:in)
24.11.2021
13 pages
Aufsatz/Kapitel (Buch)
Elektronische Ressource
Englisch
Finite Element Analysis of Utility Pipe Tunnel Affected by Adjacent Deep Excavation
British Library Conference Proceedings | 2012
|Finite Element Analysis of Utility Pipe Tunnel Affected by Adjacent Deep Excavation
Tema Archiv | 2011
|Finite Element Analysis of Utility Pipe Tunnel Affected by Adjacent Deep Excavation
Trans Tech Publications | 2011
|Analysis of Two High Rise Structures Adjacent to a Deep Excavation
British Library Conference Proceedings | 2003
|