Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Berechnungen auf dem Rotationsellipsoid
Nur bei sehr kleinräumigen geodätischen Aufgaben kann die Erdkrümmung vernachlässigt werden. Als Näherung für die unregelmäßige Erdfigur verwendet man heute bei sehr vielen geodätischen Aufgaben ein Rotationsellipsoid. Zunächst werden die geometrischen Eigenschaften des Rotationsellipsoids beleuchtet, hier vor allem die Krümmungsverhältnisse der Ellipsoidfläche. Die Umrechnung zwischen Breiten- und Längengraden sowie geozentrischen und topozentrischen kartesischen Koordinaten wird erläutert. Als wichtigste Ellipsoidflächenkurve wird die geodätische Linie eingeführt. Für diese Kurve werden Berechnungsverfahren aus auf die Ellipsoidfläche reduzierten räumlichen Messwerten vorgestellt, hier vor allem das Verfahren der Integralformeln. Zur Verebnung des Ellipsoids dient heute die winkeltreue Gaußsche Abbildung als Grundlage für Gauß-Krüger- und UTM-Koordinatensysteme. Umrechnungen zwischen diesen und ellipsoidischen Koordinaten werden erläutert. Zur praktischen Arbeit mit diesen Koordinaten müssen Meridiankonvergenzen sowie Punkt-, Linien- und Flächenmaßstäbe berechnet werden, wofür ebenfalls Formeln angegeben sind.
Berechnungen auf dem Rotationsellipsoid
Nur bei sehr kleinräumigen geodätischen Aufgaben kann die Erdkrümmung vernachlässigt werden. Als Näherung für die unregelmäßige Erdfigur verwendet man heute bei sehr vielen geodätischen Aufgaben ein Rotationsellipsoid. Zunächst werden die geometrischen Eigenschaften des Rotationsellipsoids beleuchtet, hier vor allem die Krümmungsverhältnisse der Ellipsoidfläche. Die Umrechnung zwischen Breiten- und Längengraden sowie geozentrischen und topozentrischen kartesischen Koordinaten wird erläutert. Als wichtigste Ellipsoidflächenkurve wird die geodätische Linie eingeführt. Für diese Kurve werden Berechnungsverfahren aus auf die Ellipsoidfläche reduzierten räumlichen Messwerten vorgestellt, hier vor allem das Verfahren der Integralformeln. Zur Verebnung des Ellipsoids dient heute die winkeltreue Gaußsche Abbildung als Grundlage für Gauß-Krüger- und UTM-Koordinatensysteme. Umrechnungen zwischen diesen und ellipsoidischen Koordinaten werden erläutert. Zur praktischen Arbeit mit diesen Koordinaten müssen Meridiankonvergenzen sowie Punkt-, Linien- und Flächenmaßstäbe berechnet werden, wofür ebenfalls Formeln angegeben sind.
Berechnungen auf dem Rotationsellipsoid
Lehmann, Rüdiger (Autor:in)
Geodätische und statistische Berechnungen ; Kapitel: 3 ; 147-197
13.04.2023
51 pages
Aufsatz/Kapitel (Buch)
Elektronische Ressource
Deutsch
Lösung der geodätischen Hauptaufgaben auf dem Rotationsellipsoid mittels numerischer Integration
Online Contents | 1999
|Zur Integraldarstellung der geodätischen Linie auf dem Rotationsellipsoid
Online Contents | 1993
|Berechnung geodätischer Linien auf dem Rotationsellipsoid im Grenzbereich diametraler Endpunkte
Online Contents | 2000
|Wiley | 2012
|Springer Verlag | 2023
|