Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Experimental and Numerical Investigation on Load-Bearing Performance of Aluminum Alloy Upright Column in Curtain Walls under Wind Pressure
In this paper, the wind resistance performance test and numerical simulation analysis of aluminum alloy columns with different structural measures in unit glass curtain walls are carried out. The two-layer experimental model were composed of 12 unit curtain walls, of which there are 2 beams at a distance of 1.2 m from the top and bottom in 9 unit curtain walls respectively, and there is only one beam at a distance of 1.2 m from the top in 3 unit curtain walls. The dimension of each unit curtain wall is 1.2 m × 4.0 m. The section shape of the experimental model is L-shaped. Firstly, the experimental investigation and analysis of the model with arrangement of one pair of hooks under positive and negative wind were carried out. Secondly, the experimental investigation and analysis of the model with no hooks under positive and negative wind were carried out. The out-of-plane deformation, in-plane deformation and the strain of the columns were collected and analyzed. Finally, finite element analysis model was established. The similarities and differences of the analysis results and the experimental results were analyzed. The results show that the beam has a small constraint on the columns whether the wind pressure is positive or negative when the number and position of hooks are reasonable. When the wind pressure is negative, the hook has little effect on the out-of-plane deformation and stability. Under the action of positive wind, the hooks can significantly reduce the in-plane deformation and restrain the lateral torsion deformation of the columns.
Experimental and Numerical Investigation on Load-Bearing Performance of Aluminum Alloy Upright Column in Curtain Walls under Wind Pressure
In this paper, the wind resistance performance test and numerical simulation analysis of aluminum alloy columns with different structural measures in unit glass curtain walls are carried out. The two-layer experimental model were composed of 12 unit curtain walls, of which there are 2 beams at a distance of 1.2 m from the top and bottom in 9 unit curtain walls respectively, and there is only one beam at a distance of 1.2 m from the top in 3 unit curtain walls. The dimension of each unit curtain wall is 1.2 m × 4.0 m. The section shape of the experimental model is L-shaped. Firstly, the experimental investigation and analysis of the model with arrangement of one pair of hooks under positive and negative wind were carried out. Secondly, the experimental investigation and analysis of the model with no hooks under positive and negative wind were carried out. The out-of-plane deformation, in-plane deformation and the strain of the columns were collected and analyzed. Finally, finite element analysis model was established. The similarities and differences of the analysis results and the experimental results were analyzed. The results show that the beam has a small constraint on the columns whether the wind pressure is positive or negative when the number and position of hooks are reasonable. When the wind pressure is negative, the hook has little effect on the out-of-plane deformation and stability. Under the action of positive wind, the hooks can significantly reduce the in-plane deformation and restrain the lateral torsion deformation of the columns.
Experimental and Numerical Investigation on Load-Bearing Performance of Aluminum Alloy Upright Column in Curtain Walls under Wind Pressure
KSCE J Civ Eng
KSCE Journal of Civil Engineering ; 24 ; 847-855
01.03.2020
9 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Upright column of energy-saving exposed frame curtain wall
Europäisches Patentamt | 2015
|Upright column structure for guardrail and guardrail with upright column structure
Europäisches Patentamt | 2023
|