Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Data-driven model predictive control for power demand management and fast demand response of commercial buildings using support vector regression
Demand response (DR) of commercial buildings by directly shutting down part of operating chillers could provide an immediate power reduction for power grids. In this special fast DR event, effective control needs to guarantee expected power reduction and ensure an acceptable indoor environment. This study, therefore, developed a data-driven model predictive control (MPC) using support vector regression (SVR) for fast DR events. According to the characteristics of fast DR events, the optimized hyperparameters of SVR and shortened searching range of genetic algorithm are used to improve the control performance. Meanwhile, a comprehensive comparison with RC-based MPC is conducted based on three scenarios of power demand controls. Test results show that the proposed SVR-based MPC could fulfill the control objectives of power demand and indoor temperature simultaneously. Compared with RC-based MPC, the SVR-based MPC could alleviate the time/labor cost of model development without sacrificing the control performance of fast DR events.
Data-driven model predictive control for power demand management and fast demand response of commercial buildings using support vector regression
Demand response (DR) of commercial buildings by directly shutting down part of operating chillers could provide an immediate power reduction for power grids. In this special fast DR event, effective control needs to guarantee expected power reduction and ensure an acceptable indoor environment. This study, therefore, developed a data-driven model predictive control (MPC) using support vector regression (SVR) for fast DR events. According to the characteristics of fast DR events, the optimized hyperparameters of SVR and shortened searching range of genetic algorithm are used to improve the control performance. Meanwhile, a comprehensive comparison with RC-based MPC is conducted based on three scenarios of power demand controls. Test results show that the proposed SVR-based MPC could fulfill the control objectives of power demand and indoor temperature simultaneously. Compared with RC-based MPC, the SVR-based MPC could alleviate the time/labor cost of model development without sacrificing the control performance of fast DR events.
Data-driven model predictive control for power demand management and fast demand response of commercial buildings using support vector regression
Build. Simul.
Tang, Rui (Autor:in) / Fan, Cheng (Autor:in) / Zeng, Fanzhe (Autor:in) / Feng, Wei (Autor:in)
Building Simulation ; 15 ; 317-331
01.03.2022
15 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
demand response , support vector regression , machine learning , building peak demand , model predictive control , smart grid Engineering , Building Construction and Design , Engineering Thermodynamics, Heat and Mass Transfer , Atmospheric Protection/Air Quality Control/Air Pollution , Monitoring/Environmental Analysis
Strategies for Demand Response in Commercial Buildings
British Library Conference Proceedings | 2006
|Demand response through automated air conditioning in commercial buildings – a data-driven approach
BASE | 2020
|A fast method to predict the demand response peak load reductions of commercial buildings
Taylor & Francis Verlag | 2016
|Demand Response in Smart Buildings
Springer Verlag | 2022
|Demand Response in Commercial Buildings with an Assessable Impact on Occupant Comfort
BASE | 2016
|