Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Four kinds of capping materials for controlling phosphorus and nitrogen release from contaminated sediment using a static simulation experiment
We determined the effects of quartz sand (QS), water treatment plant sludge (WTPS), aluminum-based P-inactivation agent (Al-PIA), and lanthanum-modified bentonite (LMB) thin-layer capping on controlling phosphorus and nitrogen release from the sediment, using a static simulation experiment. The sediment in the experiment was sampled from Yundang Lagoon (Xiamen, Fujian Province, China), which is a eutrophic waterbody. The total phosphorus (TP), ammonium nitrogen (NH4+-N), and total organic carbon (TOC) levels in the overlying water were measured at regular intervals, and the changes of different P forms in WTPS, Al-PIA, and sediment of each system were analyzed before and after the test. The average TP reduction rates of LMB, Al-PIA, WTPS, and QS were 94.82, 92.14, 86.88, and 10.68%, respectively, when the release strength of sediment TP was 2.26–9.19 mg/(m2·d) and the capping strength of the materials was 2 kg/m2. Thin-layer capping of LMB, WTPS, and Al-PIA could effectively control P release from the sediment (P < 0.05). However, thin-layer capping of LMB, Al-PIA, and QS did not significantly reduce the release of ammonium N and organic matter (P > 0.05). Based on our results, LMB, Al-PIA, and WTPS thin-layer capping promoted the migration and transformation of easily released P in sediment. The P adsorbed by WTPS and Al-PIA mainly occurred in the form of NAIP.
Four kinds of capping materials for controlling phosphorus and nitrogen release from contaminated sediment using a static simulation experiment
We determined the effects of quartz sand (QS), water treatment plant sludge (WTPS), aluminum-based P-inactivation agent (Al-PIA), and lanthanum-modified bentonite (LMB) thin-layer capping on controlling phosphorus and nitrogen release from the sediment, using a static simulation experiment. The sediment in the experiment was sampled from Yundang Lagoon (Xiamen, Fujian Province, China), which is a eutrophic waterbody. The total phosphorus (TP), ammonium nitrogen (NH4+-N), and total organic carbon (TOC) levels in the overlying water were measured at regular intervals, and the changes of different P forms in WTPS, Al-PIA, and sediment of each system were analyzed before and after the test. The average TP reduction rates of LMB, Al-PIA, WTPS, and QS were 94.82, 92.14, 86.88, and 10.68%, respectively, when the release strength of sediment TP was 2.26–9.19 mg/(m2·d) and the capping strength of the materials was 2 kg/m2. Thin-layer capping of LMB, WTPS, and Al-PIA could effectively control P release from the sediment (P < 0.05). However, thin-layer capping of LMB, Al-PIA, and QS did not significantly reduce the release of ammonium N and organic matter (P > 0.05). Based on our results, LMB, Al-PIA, and WTPS thin-layer capping promoted the migration and transformation of easily released P in sediment. The P adsorbed by WTPS and Al-PIA mainly occurred in the form of NAIP.
Four kinds of capping materials for controlling phosphorus and nitrogen release from contaminated sediment using a static simulation experiment
Front. Environ. Sci. Eng.
Zhou, Zhenming (Autor:in) / Lin, Canyang (Autor:in) / Li, Shuwen (Autor:in) / Liu, Shupo (Autor:in) / Li, Fei (Autor:in) / Yuan, Baoling (Autor:in)
01.03.2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Role of sand capping in phosphorus release from sediment
Springer Verlag | 2010
|Electro-bioremediation of contaminated sediment by electrode enhanced capping
Online Contents | 2015
|British Library Online Contents | 2007
|British Library Online Contents | 2007
|British Library Conference Proceedings | 2001
|