Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Improving the Reliability of Electric Power Infrastructure Using Distributed Solar Generation: An Agent-Based Modeling Approach
Natural disasters, such as storms, hurricanes, and earthquakes, are major factors that cause disruptions of electrical power services. Improving the reliability of power infrastructure systems against such events is a major goal in research and practice. Distributed Solar Generation (DSG) can improve system reliability against such disruption of services by providing alternative sources of electrical power, located at the end-consumers, and detachable from the conventional grid. However, the growing adoption of DSG creates many challenges and uncertainties for system operators. As such, the goal of this research is to investigate the benefits of DSG in improving the reliability of the electric power infrastructure. To achieve that goal, an Agent-Based Modeling (ABM) framework is introduced to simulate the integration of DSG into the power infrastructure and markets. The model combines an ABM approach with reliability assessment of power infrastructure systems, aimed to determine the DSG resources required to mitigate the effect of natural disasters on the electric power infrastructure. Results of the complex ABM model verify the suitability of the developed framework in improving power system reliability against natural disasters. Ultimately, this research shall benefit researchers and practitioners in the field of power infrastructure systems reliability and DSG.
Improving the Reliability of Electric Power Infrastructure Using Distributed Solar Generation: An Agent-Based Modeling Approach
Natural disasters, such as storms, hurricanes, and earthquakes, are major factors that cause disruptions of electrical power services. Improving the reliability of power infrastructure systems against such events is a major goal in research and practice. Distributed Solar Generation (DSG) can improve system reliability against such disruption of services by providing alternative sources of electrical power, located at the end-consumers, and detachable from the conventional grid. However, the growing adoption of DSG creates many challenges and uncertainties for system operators. As such, the goal of this research is to investigate the benefits of DSG in improving the reliability of the electric power infrastructure. To achieve that goal, an Agent-Based Modeling (ABM) framework is introduced to simulate the integration of DSG into the power infrastructure and markets. The model combines an ABM approach with reliability assessment of power infrastructure systems, aimed to determine the DSG resources required to mitigate the effect of natural disasters on the electric power infrastructure. Results of the complex ABM model verify the suitability of the developed framework in improving power system reliability against natural disasters. Ultimately, this research shall benefit researchers and practitioners in the field of power infrastructure systems reliability and DSG.
Improving the Reliability of Electric Power Infrastructure Using Distributed Solar Generation: An Agent-Based Modeling Approach
Lecture Notes in Civil Engineering
Walbridge, Scott (Herausgeber:in) / Nik-Bakht, Mazdak (Herausgeber:in) / Ng, Kelvin Tsun Wai (Herausgeber:in) / Shome, Manas (Herausgeber:in) / Alam, M. Shahria (Herausgeber:in) / el Damatty, Ashraf (Herausgeber:in) / Lovegrove, Gordon (Herausgeber:in) / Ali, G. G. (Autor:in) / El-adaway, I. H. (Autor:in)
Canadian Society of Civil Engineering Annual Conference ; 2021
Proceedings of the Canadian Society of Civil Engineering Annual Conference 2021 ; Kapitel: 45 ; 597-608
30.05.2022
12 pages
Aufsatz/Kapitel (Buch)
Elektronische Ressource
Englisch
Agent-Based Modeling: Approach for Improving Infrastructure Management
Online Contents | 2008
|British Library Conference Proceedings | 2021
|